Chalcogenides by Design: Functionality through Metavalent Bonding and Confinement

被引:229
作者
Kooi, Bart J. [1 ]
Wuttig, Matthias [2 ]
机构
[1] Univ Groningen, Zernike Inst Adv Mat, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
[2] Rhein Westfal TH Aachen, Inst Phys IA, D-52074 Aachen, Germany
关键词
crystallization kinetics; incipient metals; materials for reconfigurable photonics; metavalent bonding; nanoscale size effects; phase change materials; thermoelectrics; PHASE-CHANGE MATERIALS; GLASS-TRANSITION TEMPERATURES; ATOMIC-FORCE MICROSCOPY; CRYSTAL NUCLEATION; THIN-FILMS; CALORIMETRIC MEASUREMENTS; CRYSTALLIZATION KINETICS; EXPERIMENTAL REALIZATION; COMBINATORIAL APPROACH; STRUCTURAL RELAXATION;
D O I
10.1002/adma.201908302
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A unified picture of different application areas for incipient metals is presented. This unconventional material class includes several main-group chalcogenides, such as GeTe, PbTe, Sb2Te3, Bi2Se3, AgSbTe2 and Ge2Sb2Te5. These compounds and related materials show a unique portfolio of physical properties. A novel map is discussed, which helps to explain these properties and separates the different fundamental bonding mechanisms (e.g., ionic, metallic, and covalent). The map also provides evidence for an unconventional, new bonding mechanism, coined metavalent bonding (MVB). Incipient metals, employing this bonding mechanism, also show a special bond breaking mechanism. MVB differs considerably from resonant bonding encountered in benzene or graphite. The concept of MVB is employed to explain the unique properties of materials utilizing it. Then, the link is made from fundamental insights to application-relevant properties, crucial for the use of these materials as thermoelectrics, phase change materials, topological insulators or as active photonic components. The close relationship of the materials' properties and their application potential provides optimization schemes for different applications. Finally, evidence will be presented that for metavalently bonded materials interesting effects arise in reduced dimensions. In particular, the consequences for the crystallization kinetics of thin films and nanoparticles will be discussed in detail.
引用
收藏
页数:37
相关论文
共 199 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]   FORMATION OF GLASSES FROM LIQUIDS AND BIOPOLYMERS [J].
ANGELL, CA .
SCIENCE, 1995, 267 (5206) :1924-1935
[3]  
[Anonymous], 2005, SCIENCE, V309, P78
[4]  
[Anonymous], 1958, CHEM CONSTITUTION IN
[5]  
[Anonymous], 2012, Neither Physics Nor Chemistry. A History of Quantum Chemistry
[6]   Amorphous and Crystalline GeTe Nanocrystals [J].
Arachchige, Indika U. ;
Soriano, Ronald ;
Malliakas, Christos D. ;
Ivanov, Sergei A. ;
Kanatzidis, Mercouri C. .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (14) :2737-2743
[7]   ATOMS IN MOLECULES [J].
BADER, RFW .
ACCOUNTS OF CHEMICAL RESEARCH, 1985, 18 (01) :9-15
[8]   SPATIAL LOCALIZATION OF ELECTRONIC PAIR AND NUMBER DISTRIBUTIONS IN MOLECULES [J].
BADER, RFW ;
STEPHENS, ME .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1975, 97 (26) :7391-7399
[9]   Beyond the bond [J].
Ball, Philip .
NATURE, 2011, 469 (7328) :26-28
[10]   Carbon-doped GeTe: A promising material for Phase-Change Memories [J].
Beneventi, G. Betti ;
Perniola, L. ;
Sousa, V. ;
Gourvest, E. ;
Maitrejean, S. ;
Bastien, J. C. ;
Bastard, A. ;
Hyot, B. ;
Fargeix, A. ;
Jahan, C. ;
Nodin, J. F. ;
Persico, A. ;
Fantini, A. ;
Blachier, D. ;
Toffoli, A. ;
Loubriat, S. ;
Roule, A. ;
Lhostis, S. ;
Feldis, H. ;
Reimbold, G. ;
Billon, T. ;
De Salvo, B. ;
Larcher, L. ;
Pavan, P. ;
Bensahel, D. ;
Mazoyer, P. ;
Annunziata, R. ;
Zuliani, P. ;
Boulanger, F. .
SOLID-STATE ELECTRONICS, 2011, 65-66 :197-204