Optimal quaternary linear codes of dimension five

被引:9
作者
Boukliev, I [1 ]
Daskalov, R [1 ]
Kapralov, S [1 ]
机构
[1] TECH UNIV,DEPT MATH,BU-5300 GABROVO,BULGARIA
基金
美国国家科学基金会;
关键词
minimum distance bounds; quaternary linear codes;
D O I
10.1109/18.508846
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let d(q)(n, k) be the maximum possible minimum Hamming distance of a q-ary [n, k, d]-code for given values of n and k. It is proved that d(4) (33,5) = 22, d(4)(49,5) = 34, d(4)(131,5) = 96, d(4)(142,5) = 104, d(4)(147,5) = 108, d(4)(152,5) = 112, d(4)(158,5) = 116, d(4)(176,5) greater than or equal to 129, d(4)(180,5) greater than or equal to 132, d(4)(190,5) greater than or equal to 140, d(4)(195,5) = 144, d(4)(200,5) = 148, d(4)(205,5) = 152, d(4)(216,5) = 160, d(4)(227,5) = 168, d(4)(232,5) = 172, d(4)(237,5) = 176, d(4)(240,5) = 178, d(4)(242,5) = 180, and d(4)(247,5) = 184. A survey of the results of recent work on bounds for quaternary Linear codes in dimensions four and five is made and a table with lower and upper bounds for d(4)(n,5) is presented.
引用
收藏
页码:1228 / 1235
页数:8
相关论文
共 18 条
[1]  
BOUKLIEV I, NEW BOUNDS MINIMUM L
[2]  
BOUKLIEV I, 1995, P INT WORKSH OPT COD, P15
[3]   THE NONEXISTENCE OF SOME 5-DIMENSIONAL QUATERNARY LINEAR CODES [J].
DASKALOV, R ;
METODIEVA, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (02) :581-583
[4]  
DASKALOV RN, 1995, P 24 SPRING C UN BUL, P167
[5]  
Dodunekov S. M., 1984, Problems of Information Transmission, V20, P239
[6]   OPTIMAL LINEAR CODES OVER GF(4) [J].
GREENOUGH, PP ;
HILL, R .
DISCRETE MATHEMATICS, 1994, 125 (1-3) :187-199
[7]  
GULLIVER TA, 1993, SCE9318 CARL U
[8]  
GULLIVER TA, IN PRESS IEEE T INFO
[9]  
HAMADA N, 1993, J COMBIN INFORM SYST, V18, P161
[10]  
HAMADA N, NONEXISTENCE SOME QU