Feedback control for nonmonotone competition models in the chemostat

被引:39
作者
Gouzé, JL [1 ]
Robledo, G [1 ]
机构
[1] INRIA, Project COMORE, F-06902 Sophia Antipolis, France
关键词
chemostat; nonmonotone growth functions; competition model; feedback control; competitive dynamical systems; global stability;
D O I
10.1016/j.nonrwa.2004.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the problem of feedback control of competition between two species with one substrate in the chemostat with nonmonotone growth functions. Without control, the generic behavior is competitive exclusion. The aim of this paper is to find a feedback control of the dilution rate, depending only on the total biomass, such that coexistence holds. We obtain a sufficient condition for the global asymptotic stability of a unique equilibrium point in the positive orthant for a three-dimensional differential system which arises from this controlled competition model. This paper generalizes the results obtained by De Leenheer and Smith in (J. Math. Biol. 46 (2003) 48). (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:671 / 690
页数:20
相关论文
共 17 条
[1]   AN ALGORITHM FOR OPERATING A FED-BATCH FERMENTER AT OPTIMUM SPECIFIC-GROWTH RATE [J].
AGRAWAL, P ;
KOSHY, G ;
RAMSEIER, M .
BIOTECHNOLOGY AND BIOENGINEERING, 1989, 33 (01) :115-125
[2]   A MATHEMATICAL MODEL FOR CONTINUOUS CULTURE OF MICROORGANISMS UTILIZING INHIBITORY SUBSTRATES [J].
ANDREWS, JF .
BIOTECHNOLOGY AND BIOENGINEERING, 1968, 10 (06) :707-+
[3]  
[Anonymous], 1998, Evol. Games Popul. Dyn., DOI DOI 10.1017/CBO9781139173179
[4]   COMPETITIVE-EXCLUSION [J].
ARMSTRONG, RA ;
MCGEHEE, R .
AMERICAN NATURALIST, 1980, 115 (02) :151-170
[5]  
Bastin G., 1990, ON LINE ESTIMATION A
[6]   UNIFORMLY PERSISTENT SYSTEMS [J].
BUTLER, G ;
FREEDMAN, HI ;
WALTMAN, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 96 (03) :425-430
[7]   A MATHEMATICAL-MODEL OF THE CHEMOSTAT WITH A GENERAL-CLASS OF FUNCTIONS DESCRIBING NUTRIENT-UPTAKE [J].
BUTLER, GJ ;
WOLKOWICZ, GSK .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1985, 45 (01) :138-151
[8]   Feedback control for chemostat models [J].
De Leenheer, P ;
Smith, H .
JOURNAL OF MATHEMATICAL BIOLOGY, 2003, 46 (01) :48-70
[9]   A UNIFIED APPROACH TO PERSISTENCE [J].
HOFBAUER, J .
ACTA APPLICANDAE MATHEMATICAE, 1989, 14 (1-2) :11-22
[10]  
Khalil HK., 2002, Nonlinear Systems, V3