Fault-tolerant control of an error-corrected qubit

被引:243
作者
Egan, Laird [1 ,2 ,9 ]
Debroy, Dripto M. [4 ,10 ]
Noel, Crystal [1 ,2 ]
Risinger, Andrew [1 ,2 ,3 ]
Zhu, Daiwei [1 ,2 ,3 ]
Biswas, Debopriyo [1 ,2 ]
Newman, Michael [5 ,10 ]
Li, Muyuan [6 ,7 ]
Brown, Kenneth R. [4 ,5 ,6 ,7 ,8 ]
Cetina, Marko [1 ,2 ]
Monroe, Christopher [1 ,2 ,3 ,4 ,5 ,9 ]
机构
[1] Univ Maryland, Ctr Quantum Informat & Comp Sci, Joint Quantum Inst, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[4] Duke Univ, Dept Phys, Durham, NC 27706 USA
[5] Duke Univ, Dept Elect & Comp Engn, Durham, NC USA
[6] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[7] Georgia Inst Technol, Sch Computat Sci & Engn, Atlanta, GA 30332 USA
[8] Duke Univ, Dept Chem, Durham, NC 27706 USA
[9] IonQ Inc, College Pk, MD 20740 USA
[10] Google Res, Venice, CA USA
关键词
QUANTUM COMPUTATION; DECOHERENCE; REALIZATION; COMPUTER; STATES;
D O I
10.1038/s41586-021-03928-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum error correction protects fragile quantum information by encoding it into a larger quantum system(1,2). These extra degrees of freedom enable the detection and correction of errors, but also increase the control complexity of the encoded logical qubit. Fault-tolerant circuits contain the spread of errors while controlling the logical qubit, and are essential for realizing error suppression in practice(3-6). Although fault-tolerant design works in principle, it has not previously been demonstrated in an error-corrected physical system with native noise characteristics. Here we experimentally demonstrate fault-tolerant circuits for the preparation, measurement, rotation and stabilizer measurement of a Bacon-Shor logical qubit using 13 trapped ion qubits. When we compare these fault-tolerant protocols to non-fault-tolerant protocols, we see significant reductions in the error rates of the logical primitives in the presence of noise. The result of fault-tolerant design is an average state preparation and measurement error of 0.6 per cent and a Clifford gate error of 0.3 per cent after offline error correction. In addition, we prepare magic states with fidelities that exceed the distillation threshold(7), demonstrating all of the key single-qubit ingredients required for universal fault-tolerant control. These results demonstrate that fault-tolerant circuits enable highly accurate logical primitives in current quantum systems. With improved two-qubit gates and the use of intermediate measurements, a stabilized logical qubit can be achieved.
引用
收藏
页码:281 / +
页数:9
相关论文
共 56 条
[1]   Simulations of many-body Fermi systems on a universal quantum computer [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1997, 79 (13) :2586-2589
[2]   FAULT-TOLERANT QUANTUM COMPUTATION WITH CONSTANT ERROR RATE [J].
Aharonov, Dorit ;
Ben-Or, Michael .
SIAM JOURNAL ON COMPUTING, 2008, 38 (04) :1207-1282
[3]   Subsystem fault tolerance with the Bacon-Shor code [J].
Aliferis, Panos ;
Cross, Andrew W. .
PHYSICAL REVIEW LETTERS, 2007, 98 (22)
[4]   Repeated quantum error detection in a surface code [J].
Andersen, Christian Kraglund ;
Remm, Ants ;
Lazar, Stefania ;
Krinner, Sebastian ;
Lacroix, Nathan ;
Norris, Graham J. ;
Gabureac, Mihai ;
Eichler, Christopher ;
Wallraff, Andreas .
NATURE PHYSICS, 2020, 16 (08) :875-+
[5]  
[Anonymous], 1996, Threshold accuracy for quantum computation
[6]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[7]   Operator quantum error-correcting subsystems for self-correcting quantum memories [J].
Bacon, D .
PHYSICAL REVIEW A, 2006, 73 (01)
[8]   Universal quantum computation with ideal Clifford gates and noisy ancillas [J].
Bravyi, S ;
Kitaev, A .
PHYSICAL REVIEW A, 2005, 71 (02)
[9]   Arbitrarily accurate composite pulse sequences [J].
Brown, KR ;
Harrow, AW ;
Chuang, IL .
PHYSICAL REVIEW A, 2004, 70 (05) :052318-1
[10]  
Calderbank R., 2020, MITIGATING COHERENT