Growth of TiO2 nanoflowers photoanode for dye-sensitized solar cells

被引:30
作者
Ma, Jing [1 ]
Ren, Weihua [1 ]
Zhao, Jing [1 ]
Yang, Hailian [1 ]
机构
[1] Taiyuan Univ Technol, Sch Mat Sci & Engn, Taiyuan 030024, Shanxi, Peoples R China
基金
中国国家自然科学基金; 山西省青年科学基金;
关键词
TiO2; nanoflowers; Hydrothermal process; Dye-sensitized solar cells; Photoanode; LOW-COST; EFFICIENT; ELECTRODE; ADHESION; PASTES; ARRAYS;
D O I
10.1016/j.jallcom.2016.09.134
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Directly growth of TiO2 nanoflowers on fluorine drop tin oxide (FTO) glass substrates were achieved by a one-step hydrothermal process. These TiO2 nanoflowers films are preeminent with strong adhesion, low internal resistance and large dye loading. They are beneficial for improving the photoelectric properties of DSSCs (dye sensitized solar cells). In the process of preparing TiO2 nanoflowers films, gradually increasing the dosage of tetrabutyl titanate, compact and uniform Rutile TiO2 nanoflowers layer can be achieved, the coverage of TiO2 nanoflowers increased along with it. Employ these TiO2 nanoflowers as the photoanode in DSSCs, the optimal DSSCs performed with a short-circuit current density of 5.77 mA cm(-2), an open-circuit voltage of 0.65 V, fill factor of 48.66 and an energy conversion efficiency of 1.83% because of large dye loading and high light harvesting ability of the DSSCs with appropriate tetrabutyl titanate and reaction temperature. Excessive or insufficient tetrabutyl titanate, or lower reaction temperature will endanger the performance of DSSCs. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1004 / 1009
页数:6
相关论文
共 20 条
[1]   Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells [J].
Boercker, J. E. ;
Enache-Pommer, E. ;
Aydil, E. S. .
NANOTECHNOLOGY, 2008, 19 (09)
[2]   Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells [J].
Chen, Dehong ;
Huang, Fuzhi ;
Cheng, Yi-Bing ;
Caruso, Rachel A. .
ADVANCED MATERIALS, 2009, 21 (21) :2206-+
[3]   Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers [J].
Chen, Wei ;
Wu, Yongzhen ;
Yue, Youfeng ;
Liu, Jian ;
Zhang, Wenjun ;
Yang, Xudong ;
Chen, Han ;
Bi, Enbing ;
Ashraful, Islam ;
Graetzel, Michael ;
Han, Liyuan .
SCIENCE, 2015, 350 (6263) :944-948
[4]   Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell [J].
Fujihara, K. ;
Kumar, A. ;
Jose, R. ;
Ramakrishna, S. ;
Uchida, S. .
NANOTECHNOLOGY, 2007, 18 (36)
[5]   Improvement of adhesion of Pt-free counter electrodes for low-cost dye-sensitized solar cells [J].
Gao, Yurong ;
Chu, Lingling ;
Wu, Mingxing ;
Wang, Linlin ;
Guo, Wei ;
Ma, Tingli .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2012, 245 :66-71
[6]   Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells [J].
Hauch, A ;
Georg, A .
ELECTROCHIMICA ACTA, 2001, 46 (22) :3457-3466
[7]   Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells [J].
Ito, Seigo ;
Chen, Peter ;
Comte, Pascal ;
Nazeeruddin, Mohammad Khaja ;
Liska, Paul ;
Pechy, Peter ;
Gratzel, Michael .
PROGRESS IN PHOTOVOLTAICS, 2007, 15 (07) :603-612
[8]   Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film [J].
Jiu, JT ;
Isoda, S ;
Wang, FM ;
Adachi, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (05) :2087-2092
[9]   Plasma spraying of efficient photoactive TiO2 coatings [J].
Mauer, Georg ;
Guignard, Alexandre ;
Vassen, Robert .
SURFACE & COATINGS TECHNOLOGY, 2013, 220 :40-43
[10]   Shape preserving chemical transformation of ZnO mesostructures into anatase TiO2 mesostructures for optoelectronic applications [J].
Muduli, Subas ;
Game, Onkar ;
Dhas, Vivek ;
Yengantiwar, Ashish ;
Ogale, Satishchandra B. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (08) :2835-2839