Development of a low frequency electrostatic comb-drive energy harvester compatible to SoC design by CMOS process

被引:45
作者
Sheu, Geeng-Jen [2 ]
Yang, Shih-Ming [1 ]
Lee, Tehsi [1 ]
机构
[1] Hsiuping Inst Technol, Dept Elect Engn, Taichung, Taiwan
[2] Natl Cheng Kung Univ, Dept Aeronaut & Astronaut, Tainan 70101, Taiwan
关键词
Comb-drive; Energy harvester; Electrostatic generator; CMOS process; GENERATOR; MOTION;
D O I
10.1016/j.sna.2010.07.013
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A 3000 mu m x 3000 mu m x 500 mu m in-plane, gap overlap, electrostatic comb-drive operating in charge-constrained cycle is developed to harvest ambient vibration. This is the smallest vibration harvester resonating at 105 Hz, implementable by standard CMOS process and compatible to System-on-Chip (SoC) design. The 2000 mu m x 2200 mu m x 450 mu m (4.9 mg) vibrating mass is made of the CMOS handle layer so as to achieve low frequency operation. Design verifications show that, with the excitation input of 10 mu m amplitude at 105 Hz, the harvester can generate an average output power of 0.0924 mu W, or equivalent output density 0.021 mu W/mm(3). The design is the most area-efficient CMOS vibration energy harvester reported to date. (C) 2010 Elsevier By. All rights reserved.
引用
收藏
页码:70 / 76
页数:7
相关论文
共 23 条
[1]   Self-powered signal processing using vibration-based power generation [J].
Amirtharajah, R ;
Chandrakasan, AP .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1998, 33 (05) :687-695
[2]   A review of power harvesting using piezoelectric materials (2003-2006) [J].
Anton, Steven R. ;
Sodano, Henry A. .
SMART MATERIALS AND STRUCTURES, 2007, 16 (03) :R1-R21
[3]  
Arakawa Y., 2004, POWER MEMS C, P187
[4]   Energy harvesting vibration sources for microsystems applications [J].
Beeby, S. P. ;
Tudor, M. J. ;
White, N. M. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (12) :R175-R195
[5]   Powering MEMS portable devices - a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems [J].
Cook-Chennault, K. A. ;
Thambi, N. ;
Sastry, A. M. .
SMART MATERIALS AND STRUCTURES, 2008, 17 (04)
[6]  
DESPESSE G, 2005, P NANOTECHNOL C, V3, P283
[7]   Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion [J].
Hudak, Nicholas S. ;
Amatucci, Glenn G. .
JOURNAL OF APPLIED PHYSICS, 2008, 103 (10)
[8]   Theoretical comparison of the energy harvesting capability among various electrostatic mechanisms from structure aspect [J].
Lee, Chengkuo ;
Lima, Ye Mei ;
Yang, Bin ;
Kotlanka, Rama Krishna ;
Heng, Chun-Huat ;
He, Johnny Han ;
Tang, Min ;
Xie, Jin ;
Feng, Hanhua .
SENSORS AND ACTUATORS A-PHYSICAL, 2009, 156 (01) :208-216
[9]  
Ma W., 2005, DESIGN TEST INTEGRAT, P380
[10]   Vibration-to-electric energy conversion [J].
Meninger, S ;
Mur-Miranda, JO ;
Amirtharajah, R ;
Chandrakasan, AP ;
Lang, JH .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2001, 9 (01) :64-76