Carbon Nanomaterials in Different Dimensions for Electrochemical Energy Storage

被引:497
作者
Ni, Jiangfeng [1 ]
Li, Yan [2 ,3 ]
机构
[1] Soochow Univ, Coll Phys Optoelect & Energy, Suzhou 215006, Peoples R China
[2] Peking Univ, Coll Chem & Mol Engn, Beijing Natl Lab Mol Sci, Key Lab Phys & Chem Nanodevices, Beijing 100871, Peoples R China
[3] Peking Univ, State Key Lab Rare Earth Mat Chem & Applicat, Beijing 100871, Peoples R China
关键词
carbon nanomaterials; electrochemical energy storage; fullerenes; carbon nanotubes; graphene; REDUCED GRAPHENE OXIDE; LITHIUM ION BATTERIES; REDOX-FLOW BATTERY; HIGH-PERFORMANCE SUPERCAPACITOR; ELECTRODE-REACTION CATALYST; NITROGEN-DOPED GRAPHENE; HIGH-CAPACITY; COMPOSITE ELECTRODE; FLEXIBLE GRAPHENE; GRAPHITE OXIDE;
D O I
10.1002/aenm.201600278
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon nanomaterials including fullerenes, carbon nanotubes, graphene, and their assemblies represent a unique type of materials in diverse formats and dimensions. They feature a large surface area, superior conductivity, fast charge transport, and intrinsic stability, which are essentially required for various electrochemical energy storage (EES) systems such as Li-ion batteries, supercapacitors, and redox flow cells. The scaled-up and reliable production and assembly of carbon nanomaterials is a prerequisite for the development of carbon nanomaterial-based EES devices. In this progress report, the preparation of carbon nanostructures and the state-of-the-art applications of carbon nanomaterials with different dimensions in versatile EES systems are summarized. The importance of the synergetic effect induced by interactions between nanocarbons and active electrode species is highlighted. The main challenges and prospects in this field are also discussed.
引用
收藏
页数:21
相关论文
共 217 条
[1]   Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors [J].
Aboutalebi, Seyed Hamed ;
Chidembo, Alfred T. ;
Salari, Maryam ;
Konstantinov, Konstantin ;
Wexler, David ;
Liu, Hua Kun ;
Dou, Shi Xue .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (05) :1855-1865
[2]  
An KH, 2001, ADV MATER, V13, P497, DOI 10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO
[3]  
2-H
[4]   A study of Li-ion diffusion kinetics in the fullerene-coated Si anodes of lithium ion batteries [J].
Arie, Arenst Andreas ;
Lee, Joong Kee .
PHYSICA SCRIPTA, 2010, T139
[5]   Effect of fullerene coating on silicon thin film anodes for lithium rechargeable batteries [J].
Arie, Arenst Andreas ;
Chang, Wonyoung ;
Lee, Joong Kee .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2010, 14 (01) :51-56
[6]   The doping of carbon nanotubes with nitrogen and their potential applications [J].
Ayala, P. ;
Arenal, R. ;
Ruemmeli, M. ;
Rubio, A. ;
Pichler, T. .
CARBON, 2010, 48 (03) :575-586
[7]   Spinel LiMn2O4/reduced graphene oxide hybrid for high rate lithium ion batteries [J].
Bak, Seong-Min ;
Nam, Kyung-Wan ;
Lee, Chang-Wook ;
Kim, Kwang-Heon ;
Jung, Hyun-Chul ;
Yang, Xiao-Qing ;
Kim, Kwang-Bum .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (43) :17309-17315
[8]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[9]   Chemically functionalized carbon nanotubes [J].
Balasubramanian, K ;
Burghard, M .
SMALL, 2005, 1 (02) :180-192
[10]   Extremely Durable High-Rate Capability of a LiNi0.4Mn0.4Co0.2O2 Cathode Enabled with Single-Walled Carbon Nanotubes [J].
Ban, Chunmei ;
Li, Zheng ;
Wu, Zhuangchun ;
Kirkham, Melanie J. ;
Chen, Le ;
Jung, Yoon Seok ;
Payzant, E. Andrew ;
Yan, Yanfa ;
Whittingham, M. Stanley ;
Dillon, Anne C. .
ADVANCED ENERGY MATERIALS, 2011, 1 (01) :58-62