Identification method of neuro-fuzzy-based Hammerstein model with coloured noise

被引:41
作者
Li, Feng [1 ]
Li, Jia [1 ]
Peng, Daogang [2 ]
机构
[1] Shanghai Univ, Shanghai Key Lab Power Stn Automat Technol, Dept Automat, Coll Mechatron Engn & Automat, Shanghai 200072, Peoples R China
[2] Shanghai Univ Elect Power, Coll Automat Engn, Shanghai Key Lab Power Stn Automat Technol, Shanghai 200090, Peoples R China
基金
中国国家自然科学基金;
关键词
SUBSPACE IDENTIFICATION; ITERATIVE ALGORITHM; SYSTEMS; WIENER;
D O I
10.1049/iet-cta.2017.0306
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this study, neuro-fuzzy-based identification procedure for Hammerstein model with coloured noise is presented. Separable signal is used to realise the decoupling of the identification of dynamic linear part from that of static non-linear part, and then correlation analysis method is adopted to identify the parameters of the linear part. Furthermore, by combining multi-innovation and gradient search theory, multi-innovation-based extended stochastic gradient approach is derived for improving the parameters estimation accuracy of the non-linear part and the noise model. In addition, the convergence analysis in the martingale theory illustrates that the parameter estimation error will converge to zero under the persistent excitation condition. Finally, two simulation results demonstrate that the proposed approach has high identification accuracy and good robustness to the disturbance of coloured noise.
引用
收藏
页码:3026 / 3037
页数:12
相关论文
共 41 条
[2]   A sliding-window approximation-based fractional adaptive strategy for Hammerstein nonlinear ARMAX systems [J].
Aslam, Muhammad Saeed ;
Chaudhary, Naveed Ishtiaq ;
Raja, Muhammad Asif Zahoor .
NONLINEAR DYNAMICS, 2017, 87 (01) :519-533
[3]   Convergence of the iterative algorithm for a general Hammerstein system identification [J].
Bai, Er-Wei ;
Li, Kang .
AUTOMATICA, 2010, 46 (11) :1891-1896
[4]   Frequency domain identification of Hammerstein models [J].
Bai, EW .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (04) :530-542
[5]   Identification of linear systems with hard input nonlinearities of known structure [J].
Bai, EW .
AUTOMATICA, 2002, 38 (05) :853-860
[6]  
CHEN HF, 1981, J SYST SCI MATH SCI, V1, P34
[7]   Decomposition-based least squares parameter estimation algorithm for input nonlinear systems using the key term separation technique [J].
Chen, Huibo ;
Ding, Feng ;
Xiao, Yongsong .
NONLINEAR DYNAMICS, 2015, 79 (03) :2027-2035
[8]   Identification of Hammerstein nonlinear ARMAX systems [J].
Ding, F ;
Chen, TW .
AUTOMATICA, 2005, 41 (09) :1479-1489
[9]  
Ding F, 2006, NONLINEAR DYNAM, V45, P31, DOI 10.1007/s11071-006-1850-7
[10]   Recursive Least Squares Parameter Estimation for a Class of Output Nonlinear Systems Based on the Model Decomposition [J].
Ding, Feng ;
Wang, Xuehai ;
Chen, Qijia ;
Xiao, Yongsong .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2016, 35 (09) :3323-3338