Global bifurcation and multiple results for Sturm-Liouville problems

被引:16
|
作者
Cui, Yujun [1 ]
Sun, Jingxian [2 ]
Zou, Yumei [1 ]
机构
[1] Shandong Univ Sci & technol, Dept Appl Math, Qingdao 266510, Peoples R China
[2] Xuzhou Normal Univ, Dept Math, Xuzhou 221116, Peoples R China
基金
美国国家科学基金会;
关键词
Global bifurcation; Sturm-Liouville problems; BOUNDARY-VALUE-PROBLEMS; NONLINEAR EIGENVALUE PROBLEMS; POSITIVE SOLUTIONS; EXISTENCE; EQUATIONS;
D O I
10.1016/j.cam.2010.10.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear Sturm-Liouville boundary value problem {(Lu)(t) = lambda a(t)f(u(t)), 0 < t < 1, R-i(u)= alpha(i)u(0) + beta(1)u'(0) = 0, R-2(u) = alpha(2)u(1) + beta(2)u'(1) = 0, where L is the linear Sturm-Liouville operator (Lu)(t) = -(p(t)u' (t))' + q(t)u(t). We obtain a global bifurcation result for a related bifurcation problem. We then use this to obtain multiple (at least eight) solutions of the Sturm-Liouville problem having specified nodal properties. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2185 / 2192
页数:8
相关论文
共 50 条