On some integral operators on the unit polydisk and the unit ball

被引:80
作者
Chang, Der-Chen [1 ]
Li, Songxiao [2 ,3 ]
Stevic, Stevo [4 ]
机构
[1] Georgetown Univ, Dept Math, Washington, DC 20057 USA
[2] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
[3] Jia Ying Univ, Dept Math, Meizhou, Guangdong, Peoples R China
[4] Serbian Acad Sci, Math Inst, Belgrade 11000, Serbia
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2007年 / 11卷 / 05期
关键词
Cesaro operator; Riemann-Stieltjes operator; Hardy space; Bergman space; Bloch space; boundedness; compactness;
D O I
10.11650/twjm/1500404862
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let D-n be the unit polydisk and B be the unit ball in C-n respectively. In this paper, we extend the Cesaro operator to the unit polydisk and the unit ball. We prove that the generalized Cesaro operator C-(b) over right arrow,C-(c) over right arrow is bounded on the Hardy space H-P(D-n) and the mixed norm space A((mu) over right arrow)(p,q)(D-n), when 0 < q < infinity, 1, p is an element of (0, 1] and Re (b(j) + 1) > Re c(j) > 0, j = 1,..., n, or if 0 < q < infinity, p > 1 and Re (b(j) + 1) > Re c(j) >= 1, j = 1, ..., n. Here (mu) over right arrow = (mu(1),..., mu(n)) and each mu(j), j is an element of {1,..., n} is a positive Borel measure on the interval [0, 1). We also introduce a new class of averaging integral operators C-zeta 0(b,c) (the generalized Cesaro operators) on B and prove the boundedness of the operator on the Hardy plq space H-p (B), p is an element of (0, infinity), the mixed-norm space A(mu)(p,q) (B), 0 < p, q < infinity and the alpha-Bloch space, when alpha > 1. Finally, we study the boundedness and compactness of recently introduced Riemann-Stieltjes type operators T-g and L-g, from H-infinity and Bergman type spaces to alpha-Bloch spaces and little alpha-Bloch spaces on B.
引用
收藏
页码:1251 / 1285
页数:35
相关论文
共 51 条
[1]   Boundedness of generalized Cesaro averaging operators on certain function spaces [J].
Agrawal, MR ;
Howlett, PG ;
Lucas, SK ;
Naik, S ;
Ponnusamy, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 180 (02) :333-344
[2]   An integral operator on Hp and Hardy's inequality [J].
Aleman, A ;
Cima, JA .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 85 (1) :157-176
[3]  
Aleman A, 1997, INDIANA U MATH J, V46, P337
[4]  
ALEMAN A, 1995, COMPLEX VARIABLES, V28, P140
[5]   Cesaro averaging operators on Hardy spaces [J].
Andersen, KF .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :617-624
[6]  
[Anonymous], COMPLEX VARIABLES TH
[7]   A note on weighted Bergman spaces and the Cesaro operator [J].
Benke, G ;
Chang, DC .
NAGOYA MATHEMATICAL JOURNAL, 2000, 159 :25-43
[9]   Sobolev and Lipschitz estimates for weighted Bergman projections [J].
Chang, DC ;
Li, BQ .
NAGOYA MATHEMATICAL JOURNAL, 1997, 147 :147-178
[10]   A note on weighted Bergman spaces and the Cesaro operator (vol 159, pg 25, 2000) [J].
Chang, DC ;
Stevic, S .
NAGOYA MATHEMATICAL JOURNAL, 2005, 180 :77-90