Ionic Liquid Functionalized Gel Polymer Electrolytes for Stable Lithium Metal Batteries

被引:116
作者
Zhou, Tianhong [1 ]
Zhao, Yan [1 ]
Choi, Jang Wook [2 ,3 ]
Coskun, Ali [1 ]
机构
[1] Univ Fribourg, Dept Chem, Chemin Musee 9, CH-1700 Fribourg, Switzerland
[2] Seoul Natl Univ, Sch Chem & Biol Engn, Dept Mat Sci & Engn, 1 Gwanak Ro, Seoul 08826, South Korea
[3] Seoul Natl Univ, Inst Chem Proc, 1 Gwanak Ro, Seoul 08826, South Korea
基金
瑞士国家科学基金会; 新加坡国家研究基金会;
关键词
gel polymer electrolyte; ionic conductivity; ionic liquid; Li ion transference number; Li metal anode; ANODE; HOST;
D O I
10.1002/anie.202106237
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metallic lithium (Li) is regarded as the ideal anode material in lithium-ion batteries due to its low electrochemical potential, highest theoretical energy density and low density. There are, however, still significant challenges to be addressed such as Li-dendrite growth and low interfacial stability, which impede the practical application of Li metal anodes. In order to circumvent these shortcomings, herein, we present a gel polymer electrolyte containing imidazolium ionic liquid end groups with a perfluorinated alkyl chain (F-IL) to achieve both high ionic conductivity and Li ion transference number by fundamentally altering the solubility of salt within the gel electrolyte through Lewis-acidic segments in the polymer backbone. Moreover, the presence of F-IL moieties decreased the binding affinity of Li cation towards the glycol chains, enabling a rapid transfer of Li cation within the gel network. These structural features enabled the immobilization of anions on the ionic liquid segments to alleviate the space-charge effect while promoting stronger anion coordination and weaker cation coordination in the Lewis-acidic polymers. Accordingly, we realized a high Li ion conductivity (9.16x10(-3) S cm(-1)) and high Li ion transference number of 0.69 simultaneously, along with a good electrochemical stability up to 4.55 V, while effectively suppressing Li dendrite growth. Moreover, the gel polymer electrolyte exhibited stable cycling performance of the Li|Li symmetric cell of 9 mAh cm(-2) for more than 1800 hours and retained 86.7 % of the original capacity after 250 cycles for lithium-sulfur (Li-S) full cell.
引用
收藏
页码:22791 / 22796
页数:6
相关论文
共 48 条
[1]  
[Anonymous], 2014, ANGEW CHEM, V126, P498
[2]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[3]   Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode [J].
Chen, Hao ;
Pei, Allen ;
Lin, Dingchang ;
Xie, Jin ;
Yang, Ankun ;
Xu, Jinwei ;
Lin, Kaixiang ;
Wang, Jiangyan ;
Wang, Hansen ;
Shi, Feifei ;
Boyle, David ;
Cui, Yi .
ADVANCED ENERGY MATERIALS, 2019, 9 (22)
[4]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[5]   A Review of Solid Electrolyte Interphases on Lithium Metal Anode [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Wei, Fei ;
Zhang, Ji-Guang ;
Zhang, Qiang .
ADVANCED SCIENCE, 2016, 3 (03)
[6]   Gel Polymer Electrolytes for Electrochemical Energy Storage [J].
Cheng, Xunliang ;
Pan, Jian ;
Zhao, Yang ;
Liao, Meng ;
Peng, Huisheng .
ADVANCED ENERGY MATERIALS, 2018, 8 (07)
[7]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[8]   Cationic Surfactant-Based Electrolyte Additives for Uniform Lithium Deposition via Lithiophobic Repulsion Mechanisms [J].
Dai, Hongliu ;
Xi, Kai ;
Liu, Xin ;
Lai, Chao ;
Zhang, Shanqing .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (50) :17515-17521
[9]  
Han F, 2018, JOULE, V2, P16, DOI [10.1016/j.joule.2017.12.014, 10.1016/j.joule.2018.02.007]
[10]   Lithiophilic CuO Nanoflowers on Ti-Mesh Inducing Lithium Lateral Plating Enabling Stable Lithium-Metal Anodes with Ultrahigh Rates and Ultralong Cycle Life [J].
Huang, Kai ;
Li, Zhi ;
Xu, Qunjie ;
Liu, Haimei ;
Li, Hexing ;
Wang, Yonggang .
ADVANCED ENERGY MATERIALS, 2019, 9 (29)