Constraining landslide characteristics with Bayesian inversion of field and seismic data

被引:21
|
作者
Moretti, L. [1 ,2 ]
Mangeney, A. [1 ,2 ,3 ]
Walter, F. [4 ]
Capdeville, Y. [5 ]
Bodin, T. [6 ]
Stutzmann, E. [1 ,2 ]
Le Friant, A. [1 ,2 ]
机构
[1] Inst Phys Globe Paris, UMR 7154, Paris, France
[2] Univ Paris, Paris, France
[3] INRIA JL Lions, Paris, France
[4] Swiss Fed Inst Technol, Lab Hydraul Hydrol & Glaciol VAW, Zurich, Switzerland
[5] Lab Planetol & Geodynam Nantes, F-44300 Nantes, France
[6] Univ Lyon, CNRS, ENS Lyon, UMR 5276,LGL TPE, F-69622 Villeurbanne, France
基金
瑞士国家科学基金会;
关键词
Friction; Geomorphology; Atlantic Ocean; Numerical modelling; Waveform inversion; Volcano seismology; SOUFRIERE HILLS VOLCANO; BOXING-DAY; 1997; DEBRIS AVALANCHE; HISTORY; WAVES; EARTH; MODEL; FRICTION; COLLAPSE;
D O I
10.1093/gji/ggaa056
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Using a fully nonlinear Bayesian approach based on forward modelling of granular flow, we invert for landslide parameters (volume, release geometry and rheology) from different kinds of observations. Synthetic tests show that the runout distance and the deposit area by themselves do not constrain landslide parameters. Better constraints on landslide parameters are obtained from the thickness distribution of the landslide deposits, as well as from the force history applied by the landslide to the ground, which contains information on the landslide dynamics. Therefore, inverting force histories calculated from seismic broad-band records is an important alternative to inverting thickness distributions of landslide deposits, which are usually difficult to obtain. We test the method on the 1997 Boxing Day debris avalanche on Montserrat Island, which involved 40 - 50 Mm(3). The Bayesian inversion and granular flow model provide good estimates for volume, release geometry and effective friction coefficient. This study thus underlines the value of broad-band seismic records as observations to monitor landslides and validation for their numerical flow models.
引用
收藏
页码:1341 / 1348
页数:8
相关论文
共 50 条
  • [1] Estimation of dynamic friction of the Akatani landslide from seismic waveform inversion and numerical simulation
    Yamada, Masumi
    Mangeney, Anne
    Matsushi, Yuki
    Moretti, Laurent
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2016, 206 (03) : 1479 - 1486
  • [2] Bayesian inversion of refraction seismic traveltime data
    Ryberg, T.
    Haberland, Ch.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2018, 212 (03) : 1645 - 1656
  • [3] Model Space Exploration for Determining Landslide Source History from Long-Period Seismic Data
    Zhao, Juan
    Moretti, Laurent
    Mangeney, Anne
    Stutzmann, Eleonore
    Kanamori, Hiroo
    Capdeville, Yann
    Calder, Eliza S.
    Hibert, Clement
    Smith, Patrick J.
    Cole, Paul
    LeFriant, Anne
    PURE AND APPLIED GEOPHYSICS, 2015, 172 (02) : 389 - 413
  • [4] Sparse Variational Bayesian Inversion for Subsurface Seismic Imaging
    Urozayev, Dias
    Ait-El-Fquih, Boujemaa
    Peter, Daniel B.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 13
  • [5] Seismic attenuation compensation by Bayesian inversion
    Wang, Shoudong
    Song, Huijuan
    Yang, Dengfeng
    JOURNAL OF APPLIED GEOPHYSICS, 2014, 111 : 356 - 363
  • [6] Constraining the kinetics of mantle phase changes with seismic data
    Durand, S.
    Chambat, F.
    Matas, J.
    Ricard, Y.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2012, 189 (03) : 1557 - 1564
  • [7] Bayesian trans-dimensional full waveform inversion: synthetic and field data application
    Guo, Peng
    Visser, Gerhard
    Saygin, Erdinc
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 222 (01) : 610 - 627
  • [8] Reflectivity inversion for attenuated seismic data: Physical modeling and field data experiments
    Chai, Xintao
    Wang, Shangxu
    Wei, Jianxin
    Li, Jingnan
    Yin, Hanjun
    GEOPHYSICS, 2016, 81 (01) : T11 - T24
  • [9] Deep generator priors for Bayesian seismic inversion
    Fang, Zhilong
    Fang, Hongjian
    Demanet, Laurent
    MACHINE LEARNING IN GEOSCIENCES, 2020, 61 : 179 - 216
  • [10] Learning-Based Seismic Velocity Inversion with Synthetic and Field Data
    Farris, Stuart
    Clapp, Robert
    Araya-Polo, Mauricio
    SENSORS, 2023, 23 (19)