On blow-up of solution for Euler equations

被引:9
作者
Behr, E [1 ]
Necas, J [1 ]
Wu, HY [1 ]
机构
[1] No Illinois Univ, Dept Math, De Kalb, IL 60115 USA
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2001年 / 35卷 / 02期
关键词
Euler equations; blow-up of solution;
D O I
10.1051/m2an:2001113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present numerical evidence for the blow-up of solution for the Euler equations. Our approximate solutions are Taylor polynomials in the time variable of an exact solution, and we believe that in terms of the exact solution, the blow-up will be rigorously proved.
引用
收藏
页码:229 / 238
页数:10
相关论文
共 14 条
[1]   On the existence and uniqueness of flows multipolar fluids of grade 3 and their stability [J].
Bellout, H ;
Necas, J ;
Rajagopal, KR .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1999, 37 (01) :75-96
[3]   NUMERICAL COMPUTATION OF 3D INCOMPRESSIBLE IDEAL FLUIDS WITH SWIRL [J].
GRAUER, R ;
SIDERIS, TC .
PHYSICAL REVIEW LETTERS, 1991, 67 (25) :3511-3514
[4]   FINITE-TIME SINGULARITIES IN IDEAL FLUIDS WITH SWIRL [J].
GRAUER, R ;
SIDERIS, TC .
PHYSICA D, 1995, 88 (02) :116-132
[5]  
Hille Einar, 1957, Functional analysis and semigroups, V31
[6]   EVIDENCE FOR A SINGULARITY OF THE 3-DIMENSIONAL, INCOMPRESSIBLE EULER EQUATIONS [J].
KERR, RM .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (07) :1725-1746
[7]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[8]  
Lions P.-L., 1998, Oxford Lecture Series in Mathematics and Its Applications, V2
[9]   On possible singular solutions to the Navier-Stokes equations [J].
Málek, J ;
Necas, J ;
Pokorny, M ;
Schonbek, ME .
MATHEMATISCHE NACHRICHTEN, 1999, 199 :97-114
[10]  
Necas J, 1996, CR ACAD SCI I-MATH, V323, P245