Artificial intelligence for solid tumour diagnosis in digital pathology

被引:16
作者
Klein, Christophe [1 ]
Zeng, Qinghe [1 ,2 ]
Arbaretaz, Floriane [1 ]
Devevre, Estelle [1 ]
Calderaro, Julien [3 ]
Lomenie, Nicolas [2 ]
Maiuri, Maria Chiara [1 ]
机构
[1] Univ Paris, Sorbonne Univ, Ctr Histol Imagerie & Cytometrie CHIC, Ctr Rech Cordeliers,INSERM, Paris, France
[2] Univ Paris, Lab Informat Paris Descartes LIPADE, Paris, France
[3] Hop Henri Mondor, Dept Pathol, Creteil, France
关键词
artificial intelligence; cancer; convolutional neural networks; digital pathology; histopathology; WHOLE SLIDE IMAGES; INFILTRATING LYMPHOCYTES; STANDARDIZED METHOD; DIABETIC-RETINOPATHY; CANCER; HISTOPATHOLOGY; CARCINOMA; MELANOMA; CLASSIFICATION; VALIDATION;
D O I
10.1111/bph.15633
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Tumour diagnosis relies on the visual examination of histological slides by pathologists through a microscope eyepiece. Digital pathology, the digitalization of histological slides at high magnification with slides scanners, has raised the opportunity to extract quantitative information due to image analysis. In the last decade, medical image analysis has made exceptional progress due to the development of artificial intelligence (AI) algorithms. AI has been successfully used in the field of medical imaging and more recently in digital pathology. The feasibility and usefulness of AI assisted pathology tasks have been demonstrated in the very last years and we can expect those developments to be applied to routine histopathology in the future. In this review, we will describe and illustrate this technique and present the most recent applications in the field of tumour histopathology.
引用
收藏
页码:4291 / 4315
页数:25
相关论文
共 155 条
[1]   Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices [J].
Abramoff, Michael D. ;
Lavin, Philip T. ;
Birch, Michele ;
Shah, Nilay ;
Folk, James C. .
NPJ DIGITAL MEDICINE, 2018, 1
[2]   Artificial intelligence as the next step towards precision pathology [J].
Acs, B. ;
Rantalainen, M. ;
Hartman, J. .
JOURNAL OF INTERNAL MEDICINE, 2020, 288 (01) :62-81
[3]   Whole slide images as a platform for initial diagnostics in histopathology in a medium-sized routine laboratory [J].
Al-Janabi, Shaimaa ;
Huisman, Andre ;
Nap, Marius ;
Clarijs, Ruud ;
van Diest, Paul J. .
JOURNAL OF CLINICAL PATHOLOGY, 2012, 65 (12) :1107-1111
[4]   THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Nuclear hormone receptors [J].
Alexander, Stephen P. H. ;
Cidlowski, John A. ;
Kelly, Eamonn ;
Mathie, Alistair ;
Peters, John A. ;
Veale, Emma L. ;
Armstrong, Jane F. ;
Faccenda, Elena ;
Harding, Simon D. ;
Pawson, Adam J. ;
Sharman, Joanna L. ;
Southan, Christopher ;
Davies, Jamie A. .
BRITISH JOURNAL OF PHARMACOLOGY, 2019, 176 :S229-S246
[5]  
Cruz-Roa AA, 2013, LECT NOTES COMPUT SC, V8150, P403, DOI 10.1007/978-3-642-40763-5_50
[6]   Linear quantification of lymphoid infiltration of the tumor margin: a reproducible method, developed with colorectal cancer tissues, for assessing a highly variable prognostic factor [J].
Allard, Marc-Antoine ;
Bachet, Jean Baptiste ;
Beauchet, Alain ;
Julie, Catherine ;
Malafosse, Robert ;
Penna, Christophe ;
Nordlinger, Bernard ;
Emile, Jean-Francois .
DIAGNOSTIC PATHOLOGY, 2012, 7
[7]  
[Anonymous], 2015, 3 INT C LEARN REPR I
[8]   Robust and accurate quantification of biomarkers of immune cells in lung cancer micro-environment using deep convolutional neural networks [J].
Aprupe, Lilija ;
Litjens, Geert ;
Brinker, Titus J. ;
van der Laak, Jeroen ;
Grabe, Niels .
PEERJ, 2019, 7
[9]   Classification of breast cancer histology images using Convolutional Neural Networks [J].
Araujo, Teresa ;
Aresta, Guilherme ;
Castro, Eduardo ;
Rouco, Jose ;
Aguiar, Paulo ;
Eloy, Catarina ;
Polonia, Antonio ;
Campilho, Aurelio .
PLOS ONE, 2017, 12 (06)
[10]   Deep learning algorithm predicts diabetic retinopathy progression in individual patients [J].
Arcadu, Filippo ;
Benmansour, Fethallah ;
Maunz, Andreas ;
Willis, Jeff ;
Haskova, Zdenka ;
Prunotto, Marco .
NPJ DIGITAL MEDICINE, 2019, 2 (1)