18F-FDG PET diagnostic and prognostic patterns do not overlap in Alzheimer's disease (AD) patients at the mild cognitive impairment (MCI) stage

被引:29
作者
Morbelli, Silvia [1 ,2 ]
Bauckneht, Matteo [1 ,2 ,5 ]
Arnaldi, Dario [3 ,4 ]
Picco, Agnese [3 ,4 ]
Pardini, Matteo [3 ,4 ]
Brugnolo, Andrea [3 ,4 ]
Buschiazzo, Ambra [1 ,2 ]
Pagani, Marco [5 ,6 ]
Girtler, Nicola [3 ,4 ]
Nieri, Alberto [1 ,2 ]
Chincarini, Andrea [7 ]
De Carli, Fabrizio [8 ]
Sambuceti, Gianmario [1 ,2 ]
Nobili, Flavio [3 ,4 ]
机构
[1] Univ Genoa, IST, IRCCS AOU San Martino, Nucl Med Unit, Largo R Benzi 10, I-16132 Genoa, Italy
[2] Univ Genoa, Dept Hlth Sci, Largo R Benzi 10, I-16132 Genoa, Italy
[3] Univ Genoa, Dept Neurosci DINOGMI, Clin Neurol, Genoa, Italy
[4] IRCCS AOU San Martino IST, Genoa, Italy
[5] CNR, Inst Cognit Sci & Technol, Rome, Italy
[6] Karolinska Hosp, Dept Nucl Med, Stockholm, Sweden
[7] Ist Nazl Fis Nucl, Sez Genova, Genoa, Italy
[8] CNR, Inst Bioimaging & Mol Physiol, Genoa, Italy
关键词
Mild cognitive impairment; Alzheimer'sdisease; 18F-FDG PET; AD-biomarkers; RESTING METABOLIC CONNECTIVITY; PRINCIPAL-COMPONENT ANALYSIS; FDG-PET; INSTRUMENTAL ACTIVITIES; ASSOCIATION WORKGROUPS; NATIONAL INSTITUTE; GLUCOSE-METABOLISM; BRAIN; HYPOMETABOLISM; RECOMMENDATIONS;
D O I
10.1007/s00259-017-3790-5
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose We aimed to identify the cortical regions where hypometabolism can predict the speed of conversion to dementia in mild cognitive impairment due to Alzheimer's disease (MCI-AD). Methods We selected from the clinical database of our tertiary center memory clinic, eighty-two consecutive MCI-AD that underwent 18F-fluorodeoxyglucose (FDG) PET at baseline during the first diagnostic work-up and were followed up at least until their clinical conversion to AD dementia. The whole group of MCI-AD was compared in SPM8 with a group of age-matched healthy controls (CTR) to verify the presence of AD diagnostic-pattern; then the correlation between conversion time and brain metabolism was assessed to identify the prognostic-pattern. Significance threshold was set at p < 0.05 False-Discovery-Rate (FDR) corrected at peak and at cluster level. Each MCI-AD was then compared with CTR by means of a SPM single-subject analysis and grouped according to presence of AD diagnostic-pattern and prognostic-pattern. Kaplan-Meier-analysis was used to evaluate if diagnostic-and/or prognostic-patterns can predict speed of conversion to dementia. Results Diagnostic-pattern corresponded to typical posterior hypometabolism (BA 7, 18, 19, 30, 31 and 40) and did not correlate with time to conversion, which was instead correlated with metabolic levels in right middle and inferior temporal gyri as well as in the fusiform gyrus (prognostic-pattern, BA 20, 21 and 38). At Kaplan-Meier analysis, patients with hypometabolism in the prognostic pattern converted to AD-dementia significantly earlier than patients not showing significant hypometabolism in the right middle and inferior temporal cortex (9 versus 19 months; Log rank p < 0.02, Breslow test: p < 0.003, Tarone-Ware test: p < 0.007). Conclusion The present findings support the role of FDG PET as a robust progression biomarker even in a naturalist population of MCI-AD. However, not the AD-typical diagnostic-pattern in posterior regions but the middle and inferior temporal metabolism captures speed of conversion to dementia in MCI-AD since baseline. The highlighted prognostic pattern is a further, independent source of heterogeneity in MCI-AD and affects a primary-endpoint on interventional clinical trials (time of conversion to dementia).
引用
收藏
页码:2073 / 2083
页数:11
相关论文
共 43 条
[1]   The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J].
Albert, Marilyn S. ;
DeKosky, Steven T. ;
Dickson, Dennis ;
Dubois, Bruno ;
Feldman, Howard H. ;
Fox, Nick C. ;
Gamst, Anthony ;
Holtzman, David M. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Snyder, Peter J. ;
Carrillo, Maria C. ;
Thies, Bill ;
Phelps, Creighton H. .
ALZHEIMERS & DEMENTIA, 2011, 7 (03) :270-279
[2]   Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease [J].
Anchisi, D ;
Borroni, B ;
Franceschi, M ;
Kerrouche, N ;
Kalbe, E ;
Beuthien-Beumann, B ;
Cappa, S ;
Lenz, O ;
Ludecke, S ;
Marcone, A ;
Mielke, R ;
Ortelli, P ;
Padovani, A ;
Pelati, O ;
Pupi, A ;
Scarpini, E ;
Weisenbach, S ;
Herholz, K ;
Salmon, E ;
Holthoff, V ;
Sorbi, S ;
Fazio, F ;
Perani, D .
ARCHIVES OF NEUROLOGY, 2005, 62 (11) :1728-1733
[3]   Mild cognitive impairment -: Can FDG-PET predict who is to rapidly convert to Alzheimer's disease? [J].
Chételat, G ;
Desgranges, B ;
de la Sayette, V ;
Viader, F ;
Eustache, F ;
Baron, JC .
NEUROLOGY, 2003, 60 (08) :1374-1377
[4]   Imaging in-vivo tau pathology in Alzheimer's disease with THK5317 PET in a multimodal paradigm [J].
Chiotis, Konstantinos ;
Saint-Aubert, Laure ;
Savitcheva, Irina ;
Jelic, Vesna ;
Andersen, Pia ;
Jonasson, My ;
Eriksson, Jonas ;
Lubberink, Mark ;
Almkvist, Ove ;
Wall, Anders ;
Antoni, Gunnar ;
Nordberg, Agneta .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2016, 43 (09) :1686-1699
[5]   A Standardized [18F]-FDG-PET Template for Spatial Normalization in Statistical Parametric Mapping of Dementia [J].
Della Rosa, Pasquale Anthony ;
Cerami, Chiara ;
Gallivanone, Francesca ;
Prestia, Annapaola ;
Caroli, Anna ;
Castiglioni, Isabella ;
Gilardi, Maria Carla ;
Frisoni, Giovanni ;
Friston, Karl ;
Ashburner, John ;
Perani, Daniela .
NEUROINFORMATICS, 2014, 12 (04) :575-593
[6]   Predicting Progression of Alzheimer's Disease Using Ordinal Regression [J].
Doyle, Orla M. ;
Westman, Eric ;
Marquand, Andre F. ;
Mecocci, Patrizia ;
Vellas, Bruno ;
Tsolaki, Magda ;
Kloszewska, Iwona ;
Soininen, Hilkka ;
Lovestone, Simon ;
Williams, Steve C. R. ;
Simmons, Andrew .
PLOS ONE, 2014, 9 (08)
[7]  
Drzezga A, 2005, J NUCL MED, V46, P1625
[8]   Cerebral glucose metabolism in patients with AD and different APOE genotypes [J].
Drzezga, A ;
Riemenschneider, M ;
Strassner, B ;
Grimmer, T ;
Peller, M ;
Knoll, A ;
Wagenpfeil, S ;
Minoshima, S ;
Schwaiger, M ;
Kurz, A .
NEUROLOGY, 2005, 64 (01) :102-107
[9]   Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer's disease: a PET follow-up study [J].
Drzezga, A ;
Lautenschlager, N ;
Siebner, H ;
Riemenschneider, M ;
Willoch, F ;
Minoshima, S ;
Schwaiger, M ;
Kurz, A .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2003, 30 (08) :1104-1113
[10]   Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria [J].
Dubois, Bruno ;
Feldman, Howard H. ;
Jacova, Claudia ;
Hampel, Harald ;
Molinuevo, Jose Luis ;
Blennow, Kaj ;
Dekosky, Steven T. ;
Gauthier, Serge ;
Selkoe, Dennis ;
Bateman, Randall ;
Cappa, Stefano ;
Crutch, Sebastian ;
Engelborghs, Sebastiaan ;
Frisoni, Giovanni B. ;
Fox, Nick C. ;
Galasko, Douglas ;
Habert, Marie-Odile ;
Jicha, Gregory A. ;
Nordberg, Agneta ;
Pasquier, Florence ;
Rabinovici, Gil ;
Robert, Philippe ;
Rowe, Christopher ;
Salloway, Stephen ;
Sarazin, Marie ;
Epelbaum, Stephane ;
de Souza, Leonardo C. ;
Vellas, Bruno ;
Visser, Pieter J. ;
Schneider, Lon ;
Stern, Yaakov ;
Scheltens, Philip ;
Cummings, Jeffrey L. .
LANCET NEUROLOGY, 2014, 13 (06) :614-629