On Homoclinic Solutions of a Semilinear p-Laplacian Difference Equation with Periodic Coefficients

被引:14
作者
Cabada, Alberto [1 ]
Li, Chengyue [2 ]
Tersian, Stepan [3 ]
机构
[1] Univ Santiago de Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela 15782, Spain
[2] Minzu Univ China, Dept Math, Beijing 100081, Peoples R China
[3] Univ Rousse, Dept Math Anal, Rousse 7017, Bulgaria
关键词
BOUNDARY-VALUE-PROBLEMS; ORBITS;
D O I
10.1155/2010/195376
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of homoclinic solutions for semilinear p-Laplacian difference equations with periodic coefficients. The proof of the main result is based on Brezis-Nirenberg's Mountain Pass Theorem. Several examples and remarks are given.
引用
收藏
页数:17
相关论文
共 20 条
[1]  
Agarwal RP, 2004, NONLINEAR ANAL-THEOR, V58, P69, DOI 10.1016/j.na.2004.11.012
[2]  
[Anonymous], 1899, Les Methods Nouvells de la Mecanique Leleste
[3]   REMARKS ON FINDING CRITICAL-POINTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (8-9) :939-963
[4]   Multiple solutions for discrete boundary value problems [J].
Cabada, Alberto ;
Iannizzotto, Antonio ;
Tersian, Stepan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (02) :418-428
[5]   Existence of periodic and subharmonic solutions for second-order p-Laplacian difference equations [J].
Chen, Peng ;
Fang, Hui .
ADVANCES IN DIFFERENCE EQUATIONS, 2007, 2007 (1)
[6]   Discrete Ginzburg-Landau solitons [J].
Efremidis, NK ;
Christodoulides, DN .
PHYSICAL REVIEW E, 2003, 67 (02) :5
[7]   Existence of nontrivial homoclinic orbits for fourth-order difference equations [J].
Fang, Hui ;
Zhao, Dapeng .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (01) :163-170
[8]   Positive homoclinic solutions for a class of second order differential equations [J].
Grossinho, MD ;
Minhós, F ;
Tersian, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 240 (01) :163-173
[9]   A NOTE ON PERIODIC-SOLUTIONS OF SOME NONAUTONOMOUS DIFFERENTIAL-EQUATIONS [J].
GROSSINHO, MR ;
SANCHEZ, L .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1986, 34 (02) :253-265
[10]   Three solutions to Dirichlet boundary value problems for p-Laplacian difference equations [J].
Jiang, Liqun ;
Zhou, Zhan .
ADVANCES IN DIFFERENCE EQUATIONS, 2008, 2008 (1)