A Robust Sparsity Estimation Method in Compressed Sensing

被引:0
作者
Qin, Shaohua [1 ]
Yin, Juan [2 ]
机构
[1] Shandong Normal Univ, Coll Phys & Elect, Jinan, Peoples R China
[2] Shandong Prov Qianfoshan Hosp, Med Engn Dept, Jinan, Peoples R China
来源
ADVANCES IN WIRELESS SENSOR NETWORKS | 2015年 / 501卷
关键词
Compressed sensing; Sparsity; Estimation; RECOVERY; PURSUIT;
D O I
10.1007/978-3-662-46981-1_46
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Compressed sensing has been widely used in wireless sensor networks. In compressed sensing field, many aspects depend on the sparsity of the sparse signal, and we usually assume that the sparsity is known in advance, but the sparsity is unknown and not fixed in practice. So it is necessary to estimate the sparsity before we use it. In this paper, we propose a new method to estimate the sparsity, we use greedy algorithm and relative threshold to estimate the sparsity. Comparing with the traditional method, our method does not need reconstruct the whole signal, needes fewer number of measurements and estimation times, has better performance in low SNR scenarios or when the signal is changing. The simulation indicate the advantages of the new method.
引用
收藏
页码:481 / 488
页数:8
相关论文
共 13 条
[1]   Model-Based Compressive Sensing [J].
Baraniuk, Richard G. ;
Cevher, Volkan ;
Duarte, Marco F. ;
Hegde, Chinmay .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) :1982-2001
[2]  
Baron D., 2006, ECE0612 RIC U EL COM
[3]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[4]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[5]  
Eldar YC., 2012, COMPRESSED SENSING T
[6]  
Kimura N., 2005, P NURETH 11 C OCT AV, P1
[7]  
Lopes M., 2013, P INT C MACH LEARN, P217
[8]   MATCHING PURSUITS WITH TIME-FREQUENCY DICTIONARIES [J].
MALLAT, SG ;
ZHANG, ZF .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (12) :3397-3415
[9]   Sensing, Compression, and Recovery for WSNs: Sparse Signal Modeling and Monitoring Framework [J].
Quer, Giorgio ;
Masiero, Riccardo ;
Pillonetto, Gianluigi ;
Rossi, Michele ;
Zorzi, Michele .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2012, 11 (10) :3447-3461
[10]   Signal recovery from random measurements via orthogonal matching pursuit [J].
Tropp, Joel A. ;
Gilbert, Anna C. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2007, 53 (12) :4655-4666