On Ergodic Operator Means in Banach Spaces

被引:14
作者
Aleman, Alexandru [1 ]
Suciu, Laurian [2 ]
机构
[1] Lund Univ, Fac Sci, Math, POB 118, S-22100 Lund, Sweden
[2] Lucian Blaga Univ Sibiu, Dept Math & Informat, Dr Ion Ratiu 5-7, Sibiu 550012, Romania
关键词
Cesaro mean; Supercyclic operator; Kreiss bounded operator; RESOLVENT CONDITIONS; GROWTH; POWERS;
D O I
10.1007/s00020-016-2298-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a large class of operator means and prove that a number of ergodic theorems, as well as growth estimates known for particular cases, continue to hold in the general context under fairly mild regularity conditions. The methods developed in the paper not only yield a new approach based on a general point of view, but also lead to results that are new, even in the context of the classical CesA ro means.
引用
收藏
页码:259 / 287
页数:29
相关论文
共 34 条
[21]   Semi-Fredholm theory:: Hypercyclic and supercyclic subspaces [J].
González, M ;
León-Saavedra, F ;
Montes-Rodríguez, A .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2000, 81 :169-189
[22]  
Grobler J.J., 1995, Quaestiones Math, V18, P397
[23]   LIMITS OF HYPERCYCLIC AND SUPERCYCLIC OPERATORS [J].
HERRERO, DA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (01) :179-190
[24]   REMARKS ON ERGODIC THEOREMS [J].
HILLE, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1945, 57 (MAR) :246-269
[25]  
Kuo MK, 2009, POSITIVITY, V13, P611, DOI 10.1007/s11117-008-2282-z
[26]   GENERALIZATION OF MEAN ERGODIC THEOREM [J].
LEVIATAN, D ;
RAMANUJA.MS .
STUDIA MATHEMATICA, 1971, 39 (02) :113-&
[27]   Remarks on uniform ergodic theorems [J].
Lin M. ;
Shoikhet D. ;
Suciu L. .
Acta Scientiarum Mathematicarum, 2015, 81 (1-2) :251-283
[28]   A CONTRIBUTION TO THE THEORY OF DIVERGENT SEQUENCES [J].
LORENTZ, GG .
ACTA MATHEMATICA, 1948, 80 (03) :167-190
[29]   Uniform Abel-Kreiss boundedness and the extremal behaviour of the Volterra operator [J].
Montes-Rodriguez, Alfonso ;
Sanchez-Alvarez, Juan ;
Zemanek, Jaroslav .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 91 :761-788
[30]   Resolvent conditions and powers of operators [J].
Nevanlinna, O .
STUDIA MATHEMATICA, 2001, 145 (02) :113-134