The space of D-norms revisited

被引:8
作者
Aulbach, Stefan [1 ]
Falk, Michael [1 ]
Zott, Maximilian [1 ]
机构
[1] Univ Wurzburg, Inst Math, Emil Fischer Str 30, D-97074 Wurzburg, Germany
关键词
Multivariate extreme value theory; Max-stable distributions; D-norm; Generator of D-norm; Doubly stochastic matrix; Dirichlet distribution; Dirichlet D-norm;
D O I
10.1007/s10687-014-0204-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The theory of D-norms is an offspring of multivariate extreme value theory. We present recent results on D-norms, which are completely determined by a certain random vector called generator. In the first part it is shown that the space of D-norms is a complete separable metric space, if equipped with the Wasserstein-metric in a suitable way. Secondly, multiplying a generator with a doubly stochastic matrix yields another generator. An iteration of this multiplication provides a sequence of D-norms and we compute its limit. Finally, we consider a parametric family of D-norms, where we assume that the generator follows a symmetric Dirichlet distribution. This family covers the whole range between complete dependence and independence.
引用
收藏
页码:85 / 97
页数:13
相关论文
共 17 条
[1]  
BALAKRISHNAN N., 1996, EXPONENTIAL DISTRIBU
[2]   A mixture model for multivariate extremes [J].
Boldi, M. -O. ;
Davison, A. C. .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 :217-229
[3]  
Bolley F, 2008, LECT NOTES MATH, V1934, P371
[4]  
COLES SG, 1991, J ROY STAT SOC B MET, V53, P377
[5]  
DEHAAN L, 1977, Z WAHRSCHEINLICHKEIT, V40, P317
[6]   On idempotent D-norms [J].
Falk, Michael .
JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 139 :283-294
[7]  
Nadarajah S, 2008, BULL INST MATH ACAD, V3, P433
[8]  
PICKANDS J, 1975, ANN STAT, V3, P119
[9]  
Reiss Rolf-Dieter, 1989, Springer Series in Statistics, DOI [DOI 10.1007/978-1-4613-9620-8, 10.1007/978-1-4613-9620-8]
[10]  
Segers J, 2012, REVSTAT-STAT J, V10, P61