Topology-Based Clustering Using Polar Self-Organizing Map

被引:6
|
作者
Xu, Lu [1 ]
Chow, Tommy W. S. [1 ]
Ma, Eden W. M. [2 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
[2] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Hong Kong, Peoples R China
关键词
Clustering; polar self-organizing map (PolSOM); unsupervised learning; visualization; NETWORKS;
D O I
10.1109/TNNLS.2014.2326427
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cluster analysis of unlabeled data sets has been recognized as a key research topic in varieties of fields. In many practical cases, no a priori knowledge is specified, for example, the number of clusters is unknown. In this paper, grid clustering based on the polar self-organizing map (PolSOM) is developed to automatically identify the optimal number of partitions. The data topology consisting of both the distance and density is exploited in the grid clustering. The proposed clustering method also provides a visual representation as PolSOM allows the characteristics of clusters to be presented as a 2-D polar map in terms of the data feature and value. Experimental studies on synthetic and real data sets demonstrate that the proposed algorithm provides higher clustering accuracy and lower computational cost compared with six conventional methods.
引用
收藏
页码:798 / 808
页数:11
相关论文
共 50 条
  • [41] Asymmetric k-means Clustering of the Asymmetric Self-Organizing Map
    Olszewski, Dominik
    Kacprzyk, Janusz
    Zadrainy, Slawomir
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2014, PT II, 2014, 8468 : 772 - 783
  • [42] A Granular Self-Organizing Map for Clustering and Gene Selection in Microarray Data
    Ray, Shubhra Sankar
    Ganivada, Avatharam
    Pal, Sankar K.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (09) : 1890 - 1906
  • [43] NBSOM: The naive Bayes self-organizing map
    Gonzalo A. Ruz
    Duc Truong Pham
    Neural Computing and Applications, 2012, 21 : 1319 - 1330
  • [44] Autonomous Data Collection Using a Self-Organizing Map
    Faigl, Jan
    Hollinger, Geoffrey A.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (05) : 1703 - 1715
  • [45] Analysis of industrial systems using the Self-Organizing Map
    Simula, O
    Vesanto, J
    Vasara, P
    1998 SECOND INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED INTELLIGENT ELECTRONIC SYSTEMS, KES'98 PROCEEDINGS, VOL 1, 1998, : 61 - 68
  • [46] An alternative methodology for mining seasonal pattern using self-organizing map
    Denny, L
    Lee, VCS
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2004, 3056 : 424 - 430
  • [47] A clustering method using hierarchical self-organizing maps
    Endo, M
    Ueno, M
    Tanabe, T
    JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2002, 32 (1-2): : 105 - 118
  • [48] A Clustering Method Using Hierarchical Self-Organizing Maps
    Masahiro Endo
    Masahiro Ueno
    Takaya Tanabe
    Journal of VLSI signal processing systems for signal, image and video technology, 2002, 32 : 105 - 118
  • [49] A Self-Organizing Map Approach for Time-of-Use Feature Based Wind Resource Clustering
    van Vuuren, Chantelle Y. Janse
    Vermeulen, Hendrik J.
    Groch, Matthew
    2020 11TH INTERNATIONAL RENEWABLE ENERGY CONGRESS (IREC), 2020,
  • [50] Deep embedded self-organizing maps for joint representation learning and topology-preserving clustering
    Florent Forest
    Mustapha Lebbah
    Hanene Azzag
    Jérôme Lacaille
    Neural Computing and Applications, 2021, 33 : 17439 - 17469