A facile strategy for enhanced performance of inverted organic solar cells based on low-temperature solution-processed SnO2 electron transport layer

被引:24
|
作者
Huang, Shahua [1 ]
Ali, Nasir [2 ]
Huai, Zhaoxiang [1 ]
Ren, Jingpeng [1 ]
Sun, Yansheng [1 ]
Zhao, Xiaohui [1 ]
Fu, Guangsheng [1 ]
Kong, Weiguang [1 ]
Yang, Shaopeng [1 ]
机构
[1] Hebei Univ, Coll Phys Sci & Technol, Hebei Key Lab Opt Elect Informat & Mat, Natl & Local Joint Engn Lab New Energy Photoelect, Baoding 071002, Peoples R China
[2] Zhejiang Univ, Dept Phys, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
关键词
organic solar cells; Electron transport layer; SnO2; Ethanolamine; HIGH-EFFICIENCY; INTERFACE;
D O I
10.1016/j.orgel.2019.105555
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-efficiency organic solar cells (OSCs) based on low-temperature (LT) processed SnO2 electron transport layer (ETL) are promising for their commercial use. However, high density of traps and large contact barrier for carriers at the interface between LT SnO2 and the active layer has been reported. To solve the problem, various interface modifying layer materials, such as PFN, has been introduced. Currently, the fabrication process of such interface modifying layer materials is complex and expensive. Herein, a facile strategy involved a polar solvent ethanolamine (EA) is introduced to modify LT SnO2 surface. By soaking the SnO2 film into EA solution in 2-Methoxyethanol (2-ME), EA can easily anchor into SnO2 film surface and forms a continuous monomolecular layer via dehydration reaction. The whole process is green and highly compatible with a roll-to-roll process. Further study suggests that the deep trap centers on SnO2 surface are substantially reduced and the built-in potential in OSCs is reinforced. Finally, OSCs based on EA-modified SnO2 demonstrated an enhanced power conversion efficiency from 10.71% to 12.45% which was comparable to those based on ZnO (12.26%) under the same experiment parameters. Our work boosts the development of the inverted OSCs with easy fabrication and compatibility with roll-to-roll process.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Low-temperature solution-processed ionic liquid modified SnO2 as an excellent electron transport layer for inverted organic solar cells
    Van-Huong Tran
    Khan, Rizwan
    Lee, In-Hwan
    Lee, Soo-Hyoung
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 179 : 260 - 269
  • [2] Low-Temperature Solution-Processed SnO2 Nanoparticles as a Cathode Buffer Layer for Inverted Organic Solar Cells
    Van-Huong Tran
    Ambade, Rohan B.
    Ambade, Swapnil B.
    Lee, Soo-Hyoung
    Lee, In-Hwan
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (02) : 1645 - 1653
  • [3] Low-temperature solution-processed SnO2 electron transport layer modified by oxygen plasma for planar perovskite solar cells
    Muthukrishnan, Akshaiya Padmalatha
    Lee, Junyeoung
    Kim, Jongbok
    Kim, Chang Su
    Jo, Sungjin
    RSC ADVANCES, 2022, 12 (08) : 4883 - 4890
  • [4] Low-Temperature Solution-Processed Electron Transport Layers for Inverted Polymer Solar Cells
    Zhang, Jiaqi
    Faria, Jorge C. D.
    Morbidoni, Maurizio
    Porte, Yoann
    Burgess, Claire H.
    Harrabi, Khallil
    McLachlan, Martyn A.
    ADVANCED ELECTRONIC MATERIALS, 2016, 2 (06):
  • [5] Enhanced Performance of Planar Perovskite Solar Cells Using Low-Temperature Solution-Processed Al-Doped SnO2 as Electron Transport Layers
    Chen, Hao
    Liu, Detao
    Wang, Yafei
    Wang, Chenyun
    Zhang, Ting
    Zhang, Peng
    Sarvari, Hojjatollah
    Chen, Zhi
    Li, Shibin
    NANOSCALE RESEARCH LETTERS, 2017, 12
  • [6] Enhanced Performance of Planar Perovskite Solar Cells Using Low-Temperature Solution-Processed Al-Doped SnO2 as Electron Transport Layers
    Hao Chen
    Detao Liu
    Yafei Wang
    Chenyun Wang
    Ting Zhang
    Peng Zhang
    Hojjatollah Sarvari
    Zhi Chen
    Shibin Li
    Nanoscale Research Letters, 2017, 12
  • [7] Origins of Efficient Perovskite Solar Cells with Low-Temperature Processed SnO2 Electron Transport Layer
    Yun, Alan Jiwan
    Kim, Jinhyun
    Hwang, Taehyun
    Park, Byungwoo
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (05) : 3554 - 3560
  • [8] Enhanced Crystallinity of Low-Temperature Solution-Processed SnO2 for Highly Reproducible Planar Perovskite Solar Cells
    Li, Jing
    Bu, Tongle
    Liu, Yifan
    Zhou, Jing
    Shi, Jielin
    Ku, Zhiliang
    Peng, Yong
    Zhong, Jie
    Cheng, Yi-Bing
    Huang, Fuzhi
    CHEMSUSCHEM, 2018, 11 (17) : 2898 - 2903
  • [9] Low-Temperature Solution-Processed Mg:SnO2 Nanoparticles as an Effective Cathode Interfacial Layer for Inverted Polymer Solar Cell
    Huang, Shuai
    Tang, Yuting
    Dang, Yang
    Xu, Xu
    Dong, Qngfeng
    Kang, Bonan
    Silva, S. Ravi P. P.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (05): : 6702 - 6710
  • [10] UV-Sintered Low-Temperature Solution-Processed SnO2 as Robust Electron Transport Layer for Efficient Planar Heterojunction Perovskite Solar Cells
    Huang, Like
    Sun, Xiaoxiang
    Li, Chang
    Xu, Jie
    Xu, Rui
    Du, Yangyang
    Ni, Jian
    Cai, Hongkun
    Li, Juan
    Hu, Ziyang
    Zhang, Jianjun
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (26) : 21909 - 21920