A facile strategy for enhanced performance of inverted organic solar cells based on low-temperature solution-processed SnO2 electron transport layer

被引:24
作者
Huang, Shahua [1 ]
Ali, Nasir [2 ]
Huai, Zhaoxiang [1 ]
Ren, Jingpeng [1 ]
Sun, Yansheng [1 ]
Zhao, Xiaohui [1 ]
Fu, Guangsheng [1 ]
Kong, Weiguang [1 ]
Yang, Shaopeng [1 ]
机构
[1] Hebei Univ, Coll Phys Sci & Technol, Hebei Key Lab Opt Elect Informat & Mat, Natl & Local Joint Engn Lab New Energy Photoelect, Baoding 071002, Peoples R China
[2] Zhejiang Univ, Dept Phys, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
关键词
organic solar cells; Electron transport layer; SnO2; Ethanolamine; HIGH-EFFICIENCY; INTERFACE;
D O I
10.1016/j.orgel.2019.105555
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-efficiency organic solar cells (OSCs) based on low-temperature (LT) processed SnO2 electron transport layer (ETL) are promising for their commercial use. However, high density of traps and large contact barrier for carriers at the interface between LT SnO2 and the active layer has been reported. To solve the problem, various interface modifying layer materials, such as PFN, has been introduced. Currently, the fabrication process of such interface modifying layer materials is complex and expensive. Herein, a facile strategy involved a polar solvent ethanolamine (EA) is introduced to modify LT SnO2 surface. By soaking the SnO2 film into EA solution in 2-Methoxyethanol (2-ME), EA can easily anchor into SnO2 film surface and forms a continuous monomolecular layer via dehydration reaction. The whole process is green and highly compatible with a roll-to-roll process. Further study suggests that the deep trap centers on SnO2 surface are substantially reduced and the built-in potential in OSCs is reinforced. Finally, OSCs based on EA-modified SnO2 demonstrated an enhanced power conversion efficiency from 10.71% to 12.45% which was comparable to those based on ZnO (12.26%) under the same experiment parameters. Our work boosts the development of the inverted OSCs with easy fabrication and compatibility with roll-to-roll process.
引用
收藏
页数:7
相关论文
共 41 条
[1]   Molecular Structure of 3-Aminopropyltriethoxysilane Layers Formed on Silanol-Terminated Silicon Surfaces [J].
Acres, Robert G. ;
Ellis, Amanda V. ;
Alvino, Jason ;
Lenehan, Claire E. ;
Khodakov, Dmitriy A. ;
Metha, Gregory F. ;
Andersson, Gunther G. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (10) :6289-6297
[2]   Trap-Assisted Recombination via Integer Charge Transfer States in Organic Bulk Heterojunction Photovoltaics [J].
Bao, Qinye ;
Sandberg, Oskar ;
Dagnelund, Daniel ;
Sanden, Simon ;
Braun, Slawomir ;
Aarnio, Harri ;
Liu, Xianjie ;
Chen, Weimin M. ;
Osterbacka, Ronald ;
Fahlman, Mats .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (40) :6309-6316
[3]   Photoluminescence of oxygen vacancies and hydroxyl group surface functionalized SnO2 nanoparticles [J].
Bonu, Venkataramana ;
Das, Arindam ;
Amirthapandian, S. ;
Dhara, Sandip ;
Tyagi, Ashok Kumar .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (15) :9794-9801
[4]   Energy-Level Alignment at Organic/Metal and Organic/Organic Interfaces [J].
Braun, Slawomir ;
Salaneck, William R. ;
Fahlman, Mats .
ADVANCED MATERIALS, 2009, 21 (14-15) :1450-1472
[5]   Recombination in polymer-fullerene bulk heterojunction solar cells [J].
Cowan, Sarah R. ;
Roy, Anshuman ;
Heeger, Alan J. .
PHYSICAL REVIEW B, 2010, 82 (24)
[6]   Achieving 10.5% efficiency for inverted polymer solar cells by modifying the ZnO cathode interlayer with phenols [J].
Fu, Ping ;
Guo, Xin ;
Zhang, Bin ;
Chen, Tao ;
Qin, Wei ;
Ye, Yun ;
Hou, Jianhui ;
Zhang, Jian ;
Li, Can .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (43) :16824-16829
[7]  
Greiner MT, 2012, NAT MATER, V11, P76, DOI [10.1038/nmat3159, 10.1038/NMAT3159]
[8]   Origin of the enhanced open-circuit voltage in polymer solar cells via interfacial modification using conjugated polyelectrolytes [J].
He, Chao ;
Zhong, Chengmei ;
Wu, Hongbin ;
Yang, Renqiang ;
Yang, Wei ;
Huang, Fei ;
Bazan, Guillermo C. ;
Cao, Yong .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (13) :2617-2622
[9]   Surface Structure Modification of ZnO and the Impact on Electronic Properties [J].
Hewlett, Robert M. ;
McLachlan, Martyn A. .
ADVANCED MATERIALS, 2016, 28 (20) :3893-3921
[10]   A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells [J].
Hou, Yi ;
Du, Xiaoyan ;
Scheiner, Simon ;
McMeekin, David P. ;
Wang, Zhiping ;
Li, Ning ;
Killian, Manuela S. ;
Chen, Haiwei ;
Richter, Moses ;
Levchuk, Ievgen ;
Schrenker, Nadine ;
Spiecker, Erdmann ;
Stubhan, Tobias ;
Luechinger, Norman A. ;
Hirsch, Andreas ;
Schmuki, Patrik ;
Steinrueck, Hans-Peter ;
Fink, Rainer H. ;
Halik, Marcus ;
Snaith, Henry J. ;
Brabec, Christoph J. .
SCIENCE, 2017, 358 (6367) :1192-+