Multi-label Approach for Human-Face Classification

被引:0
作者
Mohammed, Ahmed Abdulateef [1 ]
Sajjanhar, Atul [1 ]
Nasierding, Gulisong [2 ]
机构
[1] Deakin Univ, Sch Informat Technol, Burwood, Vic 3125, Australia
[2] Xinjiang Normal Univ, Sch Comp Sci, Urumqi 830054, Peoples R China
来源
2015 8TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP) | 2015年
关键词
face classification; linear discriminant analysis; multi-label classification; principal component analysis; RECOGNITION; EIGENFACES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Single-label classification models have been widely used for human-face classification. In this paper, we present a multi-label classification approach for human-face classification. Multi-label classification is more appropriate in the real world because a human-face can be associated with multiple labels. Demographic information can be derived and utilized along with facial expression in the field of face classification to assist with multi label classification. Gabor filters; Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) methods, are used to extract and project representative demographic information from facial images. For evaluation, five classification algorithms were used. We evaluate the proposed approach by performing experiments on Yale face images database. Results show the effectiveness of multi-label classification algorithms.
引用
收藏
页码:648 / 653
页数:6
相关论文
共 50 条
[41]   Semantic Abstractions for Multi-label Classification [J].
Wang, Xiaomei ;
Xuan, Xiaohua ;
Xu, Qing ;
Cai, Hua ;
Shen, Weilin .
ARTIFICIAL INTELLIGENCE LOGIC AND APPLICATIONS, AILA 2024, 2025, 2248 :143-151
[42]   Multi-Label Classification With Hyperdimensional Representations [J].
Chandrasekaran, Rishikanth ;
Asgareinjad, Fatemeh ;
Morris, Justin ;
Rosing, Tajana .
IEEE ACCESS, 2023, 11 :108458-108474
[43]   Source Detection With Multi-Label Classification [J].
Vijayamohanan, Jayakrishnan ;
Gupta, Arjun ;
Noakoasteen, Oameed ;
Goudos, Sotirios K. K. ;
Christodoulou, Christos G. .
IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2023, 4 :336-345
[44]   Detection and Multi-label Classification of Bats [J].
Dierckx, Lucile ;
Beauvois, Melanie ;
Nijssen, Siegfried .
ADVANCES IN INTELLIGENT DATA ANALYSIS XX, IDA 2022, 2022, 13205 :53-65
[45]   Multi-label Classification for Past Events [J].
Sumikawa, Yasunobu ;
Ikejiri, Ryohei .
2018 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2018), 2018, :562-567
[46]   Multi-label Scientific Document Classification [J].
Ali, Tariq ;
Asghar, Sohail .
JOURNAL OF INTERNET TECHNOLOGY, 2018, 19 (06) :1707-1716
[47]   ML-FOREST: A Multi-Label Tree Ensemble Method for Multi-Label Classification [J].
Wu, Qingyao ;
Tan, Mingkui ;
Song, Hengjie ;
Chen, Jian ;
Ng, Michael K. .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (10) :2665-2680
[48]   ReliefF for Hierarchical Multi-label Classification [J].
Slavkov, Ivica ;
Karcheska, Jana ;
Kocev, Dragi ;
Kalajdziski, Slobodan ;
Dzeroski, Saso .
NEW FRONTIERS IN MINING COMPLEX PATTERNS, NFMCP 2013, 2014, 8399 :148-161
[49]   Ensemble methods for multi-label classification [J].
Rokach, Lior ;
Schclar, Alon ;
Itach, Ehud .
EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (16) :7507-7523
[50]   Multi-Label Classification Based on Associations [J].
Alazaidah, Raed ;
Samara, Ghassan ;
Almatarneh, Sattam ;
Hassan, Mohammad ;
Aljaidi, Mohammad ;
Mansur, Hasan .
APPLIED SCIENCES-BASEL, 2023, 13 (08)