Multi-label Approach for Human-Face Classification

被引:0
作者
Mohammed, Ahmed Abdulateef [1 ]
Sajjanhar, Atul [1 ]
Nasierding, Gulisong [2 ]
机构
[1] Deakin Univ, Sch Informat Technol, Burwood, Vic 3125, Australia
[2] Xinjiang Normal Univ, Sch Comp Sci, Urumqi 830054, Peoples R China
来源
2015 8TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP) | 2015年
关键词
face classification; linear discriminant analysis; multi-label classification; principal component analysis; RECOGNITION; EIGENFACES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Single-label classification models have been widely used for human-face classification. In this paper, we present a multi-label classification approach for human-face classification. Multi-label classification is more appropriate in the real world because a human-face can be associated with multiple labels. Demographic information can be derived and utilized along with facial expression in the field of face classification to assist with multi label classification. Gabor filters; Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) methods, are used to extract and project representative demographic information from facial images. For evaluation, five classification algorithms were used. We evaluate the proposed approach by performing experiments on Yale face images database. Results show the effectiveness of multi-label classification algorithms.
引用
收藏
页码:648 / 653
页数:6
相关论文
共 50 条
[31]   Multi-dimensional multi-label classification: Towards encompassing heterogeneous label spaces and multi-label annotations [J].
Jia, Bin -Bin ;
Zhang, Min -Ling .
PATTERN RECOGNITION, 2023, 138
[32]   Multi-label classification with a reject option [J].
Pillai, Ignazio ;
Fumera, Giorgio ;
Roli, Fabio .
PATTERN RECOGNITION, 2013, 46 (08) :2256-2266
[33]   Compact learning for multi-label classification [J].
Lv, Jiaqi ;
Wu, Tianran ;
Peng, Chenglun ;
Liu, Yunpeng ;
Xu, Ning ;
Geng, Xin .
PATTERN RECOGNITION, 2021, 113
[34]   Interdependence Model for Multi-label Classification [J].
Yoshimura, Kosuke ;
Iwase, Tomoaki ;
Baba, Yukino ;
Kashima, Hisashi .
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 :55-68
[35]   Classifier chains for multi-label classification [J].
Jesse Read ;
Bernhard Pfahringer ;
Geoff Holmes ;
Eibe Frank .
Machine Learning, 2011, 85
[36]   Metric Learning for Multi-label Classification [J].
Brighi, Marco ;
Franco, Annalisa ;
Maio, Dario .
STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, S+SSPR 2020, 2021, 12644 :24-33
[37]   Multi-label classification of music by emotion [J].
Konstantinos Trohidis ;
Grigorios Tsoumakas ;
George Kalliris ;
Ioannis Vlahavas .
EURASIP Journal on Audio, Speech, and Music Processing, 2011
[38]   Semantic Abstractions for Multi-label Classification [J].
Wang, Xiaomei ;
Xuan, Xiaohua ;
Xu, Qing ;
Cai, Hua ;
Shen, Weilin .
ARTIFICIAL INTELLIGENCE LOGIC AND APPLICATIONS, AILA 2024, 2025, 2248 :143-151
[39]   Hyperspherical Learning in Multi-Label Classification [J].
Ke, Bo ;
Zhu, Yunquan ;
Li, Mengtian ;
Shu, Xiujun ;
Qiao, Ruizhi ;
Ren, Bo .
COMPUTER VISION, ECCV 2022, PT XXV, 2022, 13685 :38-55
[40]   Multi-label classification of music by emotion [J].
Trohidis, Konstantinos ;
Tsoumakas, Grigorios ;
Kalliris, George ;
Vlahavas, Ioannis .
EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2011, :1-9