Effect of Variable Viscosity on Marangoni Convective Boundary Layer Flow of Nanofluid in the Presence of Mixed Convection

被引:13
作者
Kuttan, B. Ammani [1 ]
Manjunatha, S. [1 ]
Jayanthy, S. [2 ]
Gireesha, B. J. [3 ]
Archana, M. [1 ,3 ]
机构
[1] Christ Deemed be Univ, Dept Math, Fac Engn, Bengaluru 560076, Karnataka, India
[2] BMS Coll Engn, Dept Math, Bengaluru 560019, Karnataka, India
[3] Kuvempu Univ, Dept Studies & Res Math, Shivamogga 577451, Karnataka, India
关键词
Marangoni Boundary Layer Flow; Variable Viscosity; Convection Parameter; Stretching Sheet; Nanofluid; Numerical Solutions; HEAT-TRANSFER; THERMAL-CONDUCTIVITY; STRETCHING SHEET; TEMPERATURE; SURFACE; NANOPARTICLES; GENERATION; FLUID; OXIDE;
D O I
10.1166/jon.2019.1637
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The effect of variable viscosity on Marangoni convection in immediate vicinity of the plate is discussed. The mathematical model of the problem is highly nonlinear partial differential equations transforms into two nonlinear ordinary differential equations by applying suitable similarity transformations. The reduced similarity equivalences are then solved numerically by RungeKutta Fehlberg-45 order method. The consequences of pertinent parameters like variable viscosity parameter, convection parameter and volume fraction are analyzed on various flow fields. The results acquired are on par with erstwhile published results. The results of the present study shows that for greater values of angular momentum the buoyancy effects dominate, augmentation in mixed convection carries away the free convection currents from the plate, increase in volume fraction of solid enhances the thermal conductivity of the fluid and it is important to note that Marangoni effect is constructive for cooling processes.
引用
收藏
页码:845 / 851
页数:7
相关论文
共 42 条
[1]   Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation [J].
Abel, M. Subhas ;
Mahesha, N. .
APPLIED MATHEMATICAL MODELLING, 2008, 32 (10) :1965-1983
[2]   Heat transfer in a viscoelastic boundary layer flow over a stretching sheet with viscous dissipation and non-uniform heat source [J].
Abel, M. Subhas ;
Siddheshwar, P. G. ;
Nandeppanavar, Mahantesh M. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2007, 50 (5-6) :960-966
[3]   Effects of variable viscosity and thermal conductivity of Al2O3-water nanofluid on heat transfer enhancement in natural convection [J].
Abu-Nada, Eiyad .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2009, 30 (04) :679-690
[4]   Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid [J].
Abu-Nada, Eiyad ;
Oztop, Hakan F. .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2009, 30 (04) :669-678
[5]   Experimental Investigation of Viscosity of Nanofluids Containing Oxide Nanoparticles at Varying Shear Rate [J].
Ansari, Shahzeb ;
Hussain, Taliv ;
Yahya, Syed Mohd ;
Chaturvedi, Prakhar ;
Sardar, Najam .
JOURNAL OF NANOFLUIDS, 2018, 7 (06) :1075-1080
[6]   Thermal and solutal Marangoni convection in In-Ga-Sb system [J].
Arafune, K ;
Hirata, A .
JOURNAL OF CRYSTAL GROWTH, 1999, 197 (04) :811-817
[7]   Interactive solutal and thermal marangoni convection in a rectangular open boat [J].
Arafune, K ;
Hirata, A .
NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 1998, 34 (04) :421-429
[8]   Non-isobaric Marangoni boundary layer flow for Cu, Al2O3 and TiO2 nanoparticles in a water based fluid [J].
Arifin, N. M. ;
Nazar, R. ;
Pop, I. .
MECCANICA, 2011, 46 (04) :833-843
[9]   Dynamic Viscosity and Surface Tension of Stable Graphene Oxide and Reduced Graphene Oxide Aqueous Nanofluids [J].
Cabaleiro, D. ;
Estelle, P. ;
Navas, H. ;
Desforges, A. ;
Vigolo, B. .
JOURNAL OF NANOFLUIDS, 2018, 7 (06) :1081-1088
[10]   HEAT-TRANSFER ON A CONTINUOUS STRETCHING SHEET [J].
CARRAGHER, P ;
CRANE, LJ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1982, 62 (10) :564-565