SIRT1 is involved in glucocorticoid-mediated control of uncoupling protein-3 gene transcription

被引:69
作者
Amat, Ramon
Solanes, Gemma
Giralt, Marta
Villarroya, Francesc
机构
[1] Univ Barcelona, Fac Biol, Dept Bioquim & Biol Mol, E-08028 Barcelona, Spain
[2] Univ Barcelona, Inst Biomed, E-08028 Barcelona, Spain
[3] Inst Salud Carlos III, CIBER Fisiopatol Obesidad & Nutr, Barcelona 08028, Spain
关键词
D O I
10.1074/jbc.M707114200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
UCP3 (uncoupling protein-3) is a mitochondrial membrane transporter expressed preferentially in skeletal muscle. UCP3 lowers mitochondrial membrane potential and protects muscle cells against an overload of fatty acids, and it probably reduces excessive production of reactive oxygen species. Accordingly, ucp3 gene transcription is highly sensitive to fatty acid-dependent stimulation and also to other unrelated stress signals. In this study, glucocorticoids are identified as major inducers of ucp3 gene transcription in muscle. Glucocorticoids activate the transcription of the ucp3 gene through a glucocorticoid receptor-binding site in the promoter region. Glucocorticoids are capable of inducing ucp3 gene transcription independently from the myogenic regulatory factor MyoD, in contrast with the transcriptional activation of the ucp3 gene through other nuclear hormone receptors. An interplay of regulatory factors modulates positively (p300) or negatively (histone deacetylases) the action of glucocorticoids on ucp3 gene transcription via histone acetylation or deacetylation processes, respectively. Among them, SIRT1 acts as a major repressor of ucp3 gene expression in response to glucocorticoids. The action of SIRT1 requires its deacetylase activity and results in histone deacetylation in the ucp3 promoter. Moreover, it involves a specific impairment of association of p300 with the glucocorticoid receptor. Agents activating SIRT1, such as resveratrol, repress ucp3 gene expression. The control of SIRT1 activity via the metabolic redox status of the cell points to a novel regulatory pathway of ucp3 gene transcription in response to metabolic and stress signaling in muscle cells.
引用
收藏
页码:34066 / 34076
页数:11
相关论文
共 41 条
  • [1] IMMUNOSUPPRESSION BY GLUCOCORTICOIDS - INHIBITION OF NF-KAPPA-B ACTIVITY THROUGH INDUCTION OF I-KAPPA-B SYNTHESIS
    AUPHAN, N
    DIDONATO, JA
    ROSETTE, C
    HELMBERG, A
    KARIN, M
    [J]. SCIENCE, 1995, 270 (5234) : 286 - 290
  • [2] Resveratrol inhibits firefly luciferase
    Bakhtiarova, Adel
    Taslimi, Paul
    Elliman, Stephen J.
    Kosinski, Penelope A.
    Hubbard, Brian
    Kavana, Michael
    Kemp, Daniel M.
    [J]. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 351 (02) : 481 - 484
  • [3] The histone acetylase PCAF is a nuclear receptor coactivator
    Blanco, JCG
    Minucci, S
    Lu, JM
    Yang, XJ
    Walker, KK
    Chen, HW
    Evans, RM
    Nakatani, Y
    Ozato, K
    [J]. GENES & DEVELOPMENT, 1998, 12 (11) : 1638 - 1651
  • [4] Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic β cells
    Bordone, L
    Motta, MC
    Picard, F
    Robinson, A
    Jhala, US
    Apfeld, J
    McDonagh, T
    Lemieux, M
    McBurney, M
    Szilvasi, A
    Easlon, EJ
    Lin, SJ
    Guarente, L
    [J]. PLOS BIOLOGY, 2006, 4 (02): : 210 - 220
  • [5] Calorie restriction, SIRT1 and metabolism: Understanding longevity
    Bordone, L
    Guarente, L
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2005, 6 (04) : 298 - 305
  • [6] SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1
    Bouras, T
    Fu, MF
    Sauve, AA
    Wang, F
    Quong, AA
    Perkins, ND
    Hay, RT
    Gu, W
    Pestell, RG
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (11) : 10264 - 10276
  • [7] Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3
    Brand, MD
    Esteves, TC
    [J]. CELL METABOLISM, 2005, 2 (02) : 85 - 93
  • [8] INHIBITION OF MUSCLE DIFFERENTIATION BY THE ADENOVIRUS E1A-PROTEIN - REPRESSION OF THE TRANSCRIPTIONAL ACTIVATING FUNCTION OF THE HLH PROTEIN MYF-5
    BRAUN, T
    BOBER, E
    ARNOLD, HH
    [J]. GENES & DEVELOPMENT, 1992, 6 (05) : 888 - 902
  • [9] Uncoupling protein-3 gene expression in skeletal muscle during development is regulated by nutritional factors that alter circulating non-esterified fatty acids
    Brun, S
    Carmona, MC
    Mampel, T
    Viñas, O
    Giralt, M
    Iglesias, R
    Villarroya, F
    [J]. FEBS LETTERS, 1999, 453 (1-2): : 205 - 209
  • [10] Activators of peroxisome proliferator-activated receptor-α induce the expression of the uncoupling protein-3 gene in skeletal muscle -: A potential mechanism for the lipid intake-dependent activation of uncoupling protein-3 gene expression at birth
    Brun, S
    Carmona, MC
    Mampel, T
    Viñas, O
    Giralt, M
    Iglesias, R
    Villarroya, F
    [J]. DIABETES, 1999, 48 (06) : 1217 - 1222