Performance investigation of a net-zero energy building in hot summer and cold winter zone

被引:19
|
作者
Dong, Zhao [1 ,2 ]
Zhao, Kang [1 ,3 ]
Liu, Yueqin [4 ]
Ge, Jian [1 ,2 ]
机构
[1] Zhejiang Univ, Dept Architecture, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Ctr Balance Architecture, Hangzhou 310007, Peoples R China
[3] Zhejiang Univ Co Ltd, Architectural Design & Res Inst, Hangzhou 310007, Peoples R China
[4] RUNPAQ Technol Co Ltd, Hangzhou 311305, Peoples R China
来源
JOURNAL OF BUILDING ENGINEERING | 2021年 / 43卷
关键词
Net-zero energy building; Carbon emissions; Life cycle assessment; Operational performance; PV system; LIFE-CYCLE ASSESSMENT; DUST DEPOSITION; CLIMATE; DESIGN; HOUSE; DEGRADATION; METHODOLOGY; EFFICIENCY; QUALITY;
D O I
10.1016/j.jobe.2021.103192
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The net-zero energy building (NZEB) is spreading rapidly as an integrated solution to address energy saving and carbon emissions reduction in the building sector. However, few studies pay close attention to the operational performance of NZEBs as well as their life cycle impact on the environment. This study investigates the operational performance of NZEBs, analyzes the influence factors in achieving net-zero energy, and explores the pathway to reduce the building life cycle carbon emission via a case study conducted from March 2017 to February 2018 in the hot summer and cold winter climate zone of China. The one-year investigation results show that the case building, where energy-efficient technologies and renewable energy were integrated, achieved net-zero energy with good indoor environmental quality. Based on the investigation, influence factors in achieving net-zero energy were analyzed via DesignBuilder: the minimum area per capita was 42 m(2)/person under the circumstance of net-zero energy; when operational strategy was changed, the air-conditioning energy use reduction was less than 5%. Additionally, in order to achieve net-zero energy, an equation was proposed to estimate the area ratio of installed photovoltaic (PV) panels to that of the building roof, thereby providing guidance for NZEBs design. Furthermore, life cycle carbon emissions of the project were evaluated. Based on the foregoing results, it can be concluded that by increasing carbon offsets of the PV system appropriately, an NZEB can be transformed into a life-cycle zero-emission building. Moreover, it is necessary to mention that the life cycle carbon emissions of the PV system should be considered.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Building Energy Retrofit Measures in Hot-Summer-Cold-Winter Climates: A Case Study in Shanghai
    Hong, Yuanda
    Ezeh, Collins I.
    Deng, Wu
    Hong, Sung-Hugh
    Peng, Zhen
    ENERGIES, 2019, 12 (17)
  • [32] Energy-quota-based integrated solutions for heating and cooling of residential buildings in the Hot Summer and Cold Winter zone in China
    Cao, Xinyun
    Yao, Runming
    Ding, Chao
    Zhou, Nan
    Yu, Wei
    Yao, Jinyang
    Xiong, Jie
    Xu, Qiang
    Pan, Li
    Li, Baizhan
    ENERGY AND BUILDINGS, 2021, 236
  • [33] Investigation of indoor thermal comfort of heritage buildings in hot summer and cold winter zone of China: A case study
    He, Danqiu
    Isa, Mohd Hafizal Mohd
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 53
  • [34] Performance of a Mid-Size Net-Zero Energy Solar House
    Taherian, Hessam
    Peters, Robert W.
    APPLIED SCIENCES-BASEL, 2022, 12 (06):
  • [35] Optimal Building Envelope Design and Renewable Energy Systems Size for Net-zero Energy Building in Tetouan (Morocco)
    Abdou, Nawal
    El Mghouchi, Youness
    Hamdaoui, Said
    Mhamed, Mouqallid
    PROCEEDINGS OF 2021 9TH INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC), 2021, : 280 - 285
  • [36] FEASIBILITY STUDY OF NET-ZERO ENERGY RESIDENTIAL BUILDINGS IN HOT AND HUMID CLIMATES: A CASE STUDY OF IRAN
    Mohammadi, Amin
    Mousavi, Seyed Mohammad
    JURNAL TEKNOLOGI-SCIENCES & ENGINEERING, 2022, 84 (02): : 71 - 91
  • [37] Emissions from a net-zero building in India: life cycle assessment
    Jain, Mili
    Rawal, Rajan
    BUILDINGS & CITIES, 2022, 3 (01): : 398 - 416
  • [38] Feasibility and performance analysis of a net-zero energy residential building in tropical climates: A case of Congo-Brazzaville
    Elenga, Rolains Golchimard
    Zhu, Li
    Tongora, Dickson Maigga
    Defilla, Steivan
    INDOOR AND BUILT ENVIRONMENT, 2024, 33 (06) : 1128 - 1147
  • [39] A Statistical Analysis of Energy Consumption Survey of Public Buildings in a Hot Summer and Cold Winter Coastal Zone of China
    Gong, Xuemei
    Li, Yixuan
    Cai, Junwei
    Ma, Zhenjun
    He, Siyuan
    Pan, Benben
    Lei, Xiaoyu
    BUILDINGS, 2023, 13 (11)
  • [40] Energetic and economic evaluation of hybrid solar energy systems in a residential net-zero energy building
    Li, Xian
    Lin, Alexander
    Young, Chin-Huai
    Dai, Yanjun
    Wang, Chi-Hwa
    APPLIED ENERGY, 2019, 254