Performance investigation of a net-zero energy building in hot summer and cold winter zone

被引:19
|
作者
Dong, Zhao [1 ,2 ]
Zhao, Kang [1 ,3 ]
Liu, Yueqin [4 ]
Ge, Jian [1 ,2 ]
机构
[1] Zhejiang Univ, Dept Architecture, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Ctr Balance Architecture, Hangzhou 310007, Peoples R China
[3] Zhejiang Univ Co Ltd, Architectural Design & Res Inst, Hangzhou 310007, Peoples R China
[4] RUNPAQ Technol Co Ltd, Hangzhou 311305, Peoples R China
来源
JOURNAL OF BUILDING ENGINEERING | 2021年 / 43卷
关键词
Net-zero energy building; Carbon emissions; Life cycle assessment; Operational performance; PV system; LIFE-CYCLE ASSESSMENT; DUST DEPOSITION; CLIMATE; DESIGN; HOUSE; DEGRADATION; METHODOLOGY; EFFICIENCY; QUALITY;
D O I
10.1016/j.jobe.2021.103192
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The net-zero energy building (NZEB) is spreading rapidly as an integrated solution to address energy saving and carbon emissions reduction in the building sector. However, few studies pay close attention to the operational performance of NZEBs as well as their life cycle impact on the environment. This study investigates the operational performance of NZEBs, analyzes the influence factors in achieving net-zero energy, and explores the pathway to reduce the building life cycle carbon emission via a case study conducted from March 2017 to February 2018 in the hot summer and cold winter climate zone of China. The one-year investigation results show that the case building, where energy-efficient technologies and renewable energy were integrated, achieved net-zero energy with good indoor environmental quality. Based on the investigation, influence factors in achieving net-zero energy were analyzed via DesignBuilder: the minimum area per capita was 42 m(2)/person under the circumstance of net-zero energy; when operational strategy was changed, the air-conditioning energy use reduction was less than 5%. Additionally, in order to achieve net-zero energy, an equation was proposed to estimate the area ratio of installed photovoltaic (PV) panels to that of the building roof, thereby providing guidance for NZEBs design. Furthermore, life cycle carbon emissions of the project were evaluated. Based on the foregoing results, it can be concluded that by increasing carbon offsets of the PV system appropriately, an NZEB can be transformed into a life-cycle zero-emission building. Moreover, it is necessary to mention that the life cycle carbon emissions of the PV system should be considered.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Achieving annual and monthly net-zero energy of existing building in hot climate
    AlAjmi, Ali
    Abou-Ziyan, Hosny
    Ghoneim, Adel
    APPLIED ENERGY, 2016, 165 : 511 - 521
  • [2] Net-zero energy building schools
    Zeiler, Wim
    Boxem, Gert
    RENEWABLE ENERGY, 2013, 49 : 282 - 286
  • [3] Green Industrial Building Design For Hot Summer And Cold Winter Zone
    Xiong, Lin
    Mao, Danfei
    ARCHITECTURE, BUILDING MATERIALS AND ENGINEERING MANAGEMENT, PTS 1-4, 2013, 357-360 : 543 - 546
  • [4] A systems simulation framework to realize net-zero building energy retrofits
    Thomas, Albert
    Menassa, Carol C.
    Kamat, Vineet R.
    SUSTAINABLE CITIES AND SOCIETY, 2018, 41 : 405 - 420
  • [5] Investigation and evaluation of building energy flexibility with energy storage system in hot summer and cold winter zones
    Liu, Jiangyang
    Yang, Xu
    Liu, Zhongbing
    Zou, Juan
    Wu, Yaling
    Zhang, Ling
    Zhang, Yelin
    Xiao, Hui
    JOURNAL OF ENERGY STORAGE, 2022, 46
  • [6] Optimal Energy Allocation of Net-Zero Energy Building
    Che, Yanbo
    Xue, Siyuan
    He, Wei
    Liu, Liangliang
    Jia, Jingjing
    EKOLOJI, 2019, 28 (107): : 1425 - 1436
  • [7] Evaluation on energy and thermal performance for residential envelopes in hot summer and cold winter zone of China
    Yu, Jinghua
    Yang, Changzhi
    Tian, Liwei
    Liao, Dan
    APPLIED ENERGY, 2009, 86 (10) : 1970 - 1985
  • [8] Energy Consumption and Carbon Emissions of Nearly Zero-Energy Buildings in Hot Summer and Cold Winter Zones of China
    Ke, Zikang
    Liu, Xiaoxin
    Zhang, Hui
    Jia, Xueying
    Zeng, Wei
    Yan, Junle
    Hu, Hao
    Hien, Wong Nyuk
    SUSTAINABILITY, 2023, 15 (14)
  • [9] Research on Technology System Adaptability of Nearly Zero-Energy Office Buildings in the Hot Summer and Cold Winter Zone of China
    Jia, Xueying
    Zhang, Hui
    Yao, Xin
    Yang, Lei
    Ke, Zikang
    Yan, Junle
    Huang, Xiaoxi
    Jin, Shiyu
    SUSTAINABILITY, 2023, 15 (17)
  • [10] A Materials Life Cycle Assessment of a Net-Zero Energy Building
    Thiel, Cassandra L.
    Campion, Nicole
    Landis, Amy E.
    Jones, Alex K.
    Schaefer, Laura A.
    Bilec, Melissa M.
    ENERGIES, 2013, 6 (02): : 1125 - 1141