Numerical solution of a linear fuzzy Volterra integral equation of the second kind with weakly singular kernels

被引:11
作者
Alijani, Zahra [1 ]
Kangro, Urve [2 ]
机构
[1] Univ Ostrava, Inst Res & Applicat Fuzzy Modeling, Ostrava, Czech Republic
[2] Univ Tartu, Inst Math & Stat, Tartu, Estonia
关键词
D O I
10.1007/s00500-022-07477-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we consider a linear fuzzy Volterra integral equation of the second kind with a weakly singular kernel which may change sign in the domain of integration. We propose piecewise spline collocation methods with a graded mesh. By increasing the number of collocation points, we show that the numerical solution exists and converges to the exact solution. We obtain exact convergence rates depending on the smoothness of the solution and on the grading parameter of the mesh. We give sufficient conditions for the fuzziness of the approximate solution. The proposed method is illustrated by numerical examples that confirm the theoretical convergence estimates.
引用
收藏
页码:12009 / 12022
页数:14
相关论文
共 23 条
[1]   On the Smoothness of the Solution of Fuzzy Volterra Integral Equations of the Second Kind with Weakly Singular Kernels [J].
Alijani, Zahra ;
Kangro, Urve .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (07) :819-833
[2]   Collocation Method for Fuzzy Volterra Integral Equations of the Second Kind [J].
Alijani, Zahra ;
Kangro, Urve .
MATHEMATICAL MODELLING AND ANALYSIS, 2020, 25 (01) :146-166
[3]  
Atkinson K., 2005, Theoretical numerical analysis, V39
[4]  
Balachandran K., 2005, J. Appl. Math. Stoch. Anal., V2005, P333
[5]  
Bede B, 2013, STUD FUZZ SOFT COMP, V295, P1, DOI 10.1007/978-3-642-35221-8
[6]   Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels [J].
Brunner, H ;
Pedas, A ;
Vainikko, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (03) :957-982
[7]  
Brunner H., 2017, Volterra integral equations: an introduction to theory and applications, DOI [10.1017/9781316162491, DOI 10.1017/9781316162491]
[8]  
Brunner Hermann, 2004, Collocation methods for Volterra integral and related functional differential equations, V15, DOI DOI 10.1017/CBO9780511543234
[9]   Theory and applications of fuzzy Volterra integral equations [J].
Diamond, P .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2002, 10 (01) :97-102
[10]  
Diamond P, 2000, HDB FUZZ SET SER, V7, P583