Self-powered smart blade: Helicopter blade energy harvesting

被引:9
作者
Bryant, Matthew [1 ]
Fang, Austin [1 ]
Garcia, Ephrahim [1 ]
机构
[1] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Lab Intelligent Machine Syst, Ithaca, NY 14853 USA
来源
ACTIVE AND PASSIVE SMART STRUCTURES AND INTEGRATED SYSTEMS 2010, PTS 1 AND 2 | 2010年 / 7643卷
关键词
power harvesting; energy harvesting; piezoelectricity; aeroelasticity; flutter; self-powered; helicopters;
D O I
10.1117/12.847310
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel energy harvesting device powered by aeroelastic flutter vibrations is proposed to generate power for embedded wireless sensors on a helicopter rotor blade. Such wireless sensing and on-board power generation system would eliminate the need for maintenance intensive slip ring systems that are required for hardwired sensors. A model of the system has been developed to predict the response and output of the device as a function of the incident wind speed. A system of coupled equations that describe the structural, aerodynamic, and electromechanical aspects of the system are presented. The model uses semi-empirical, unsteady, nonlinear aerodynamics modeling to predict the aerodynamic forces and moments acting on the structure and to account for the effects of vortex shedding and dynamic stall. These nonlinear effects are included to predict the limit cycle behavior of the system over a range of wind speeds. The model results are compared to preliminary wind tunnel tests of a low speed aeroelastic energy harvesting experiment.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Self-powered IoT Device based on Energy Harvesting for Remote Applications
    Kjellby, Rolf Arne
    Cenkeramaddi, Linga Reddy
    Johnsrud, Thor Eirik
    Lotveit, Svein E.
    Jevne, Geir
    Beferull-Lozano, B.
    Soumya, J.
    2018 IEEE INTERNATIONAL CONFERENCE ON ADVANCED NETWORKS AND TELECOMMUNICATIONS SYSTEMS (ANTS), 2018,
  • [32] Wireless Technologies for Energy Harvesting and Transmission for Ambient Self-Powered Systems
    Jiang, Chengmei
    Li, Xunjia
    Lian, Sophie Wan Mei
    Ying, Yibin
    Ho, John S.
    Ping, Jianfeng
    ACS NANO, 2021, 15 (06) : 9328 - 9354
  • [33] Innovative Integration of Triboelectric Nanogenerators into Signature Stamps for Energy Harvesting, Self-Powered Electronic Devices, and Smart Applications
    Bochu, Lakshakoti
    Potu, Supraja
    Navaneeth, Madathil
    Khanapuram, Uday Kumar
    Rajaboina, Rakesh Kumar
    Kodali, Prakash
    ENG, 2024, 5 (02): : 958 - 966
  • [34] Self-powered structural health monitoring with nonlinear energy harvesting system
    Yuse, Kaori
    Lallart, Michael
    Petit, Lionel
    Richard, Claude
    Monnier, Thomas
    Guyomar, Daniel
    FRONTIERS OF MECHANICAL ENGINEERING, 2010, 5 (01) : 61 - 66
  • [35] Self-Powered Implantable Medical Devices: Photovoltaic Energy Harvesting Review
    Zhao, Jinwei
    Ghannam, Rami
    Htet, Kaung Oo
    Liu, Yuchi
    Law, Man-kay
    Roy, Vellaisamy A. L.
    Michel, Bruno
    Imran, Muhammad Ali
    Heidari, Hadi
    ADVANCED HEALTHCARE MATERIALS, 2020, 9 (17)
  • [36] Energy harvesting modelling for self-powered fitness gadgets: a feasibility study
    Zareei, Sophie
    Deng, Jeremiah D.
    INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS, 2019, 34 (04) : 412 - 429
  • [37] A hybrid energy harvesting system for self-powered applications in shared bicycles
    Dai, Xiaoyi
    Wang, Hao
    Wu, Hao
    Pan, YaJia
    Luo, Dabing
    Ahmed, Ammar
    Zhang, Zutao
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 51
  • [38] Acoustic and mechanical metamaterials for energy harvesting and self-powered sensing applications
    Lee, Geon
    Lee, Seong-Jin
    Rho, Junsuk
    Kim, Miso
    MATERIALS TODAY ENERGY, 2023, 37
  • [39] A vibration energy harvesting system for Self-Powered applications in heavy railways
    Wu, Xiaoping
    Zhang, Tingsheng
    Lie, Jianyang
    Zhang, Tianming
    Kong, Weihua
    Pan, Yajia
    Luo, Dabing
    Zhang, Zutao
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 53
  • [40] A Self-Powered Rectifier-Less Synchronized Switch Harvesting on Inductor Interface Circuit for Piezoelectric Energy Harvesting
    Wang, Xiudeng
    Xia, Yinshui
    Shi, Ge
    Xia, Huakang
    Chen, Zhidong
    Ye, Yidie
    Zhu, Zhangming
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (08) : 9149 - 9159