Comparative analysis on thermal non-destructive testing imagery applying Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT)

被引:86
作者
Yousefi, Bardia [1 ]
Sfarra, Stefano [2 ,3 ]
Castanedo, Clemente Ibarra [1 ]
Maldague, Xavier P. V. [1 ]
机构
[1] Laval Univ, Dept Elect & Comp Engn, Quebec City, PQ G1V 0A6, Canada
[2] Univ Aquila, Dept Ind & Informat Engn & Econ DIIIE, LasER Lab, Piazzale E Pontieri 1, I-67100 Laquila, AQ, Italy
[3] Tomsk Polytech Univ, Lenin Av 30, Tomsk 634050, Russia
关键词
Thermal image analysis; Principal component thermography; Candid covariance-free incremental; principal component thermography; Non-Destructive Testing (NDT); K-Medoids clustering; HOLOGRAPHIC-INTERFEROMETRY; INTEGRATED APPROACH; ENHANCEMENT;
D O I
10.1016/j.infrared.2017.06.008
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Thermal and infrared imagery creates considerable developments in Non-Destructive Testing (NDT) area. Here, a thermography method for NDT specimens inspection is addressed by applying a technique for computation of eigen-decomposition which refers as Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT). The proposed approach uses a shorter computational alternative to estimate covariance matrix and Singular Value Decomposition (SVD) to obtain the result of Principal Component Thermography (PCT) and ultimately segments the defects in the specimens applying color based K-medoids clustering approach. The problem of computational expenses for high dimensional thermal image acquisition is also investigated. Three types of specimens (CFRP, Plexiglas and Aluminium) have been used for comparative benchmarking. The results conclusively indicate the promising performance and demonstrate a confirmation for the outlined properties. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:163 / 169
页数:7
相关论文
共 24 条
[1]  
[Anonymous], AMSTER658
[2]  
[Anonymous], 2012, MATRIX COMPUTATIONS
[3]  
[Anonymous], 2012, STOCHASTIC APPROXIMA
[4]   The thermographic signal reconstruction method: A powerful tool for the enhancement of transient thermographic images [J].
Balageas, Daniel L. ;
Roche, Jean-Michel ;
Leroy, Francois-Henri ;
Liu, Wei-Min ;
Gorbach, Alexander M. .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2015, 35 (01) :1-9
[5]  
Dodge Yadolah., 2012, Statistical data analysis based on the L1-norm and related methods
[6]   Incremetal spatio-temporal feature extraction and retrieval for large video database [J].
Geng, Bo ;
Lu, Hong ;
Xue, Xiangyang .
2007 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, 2007, :961-964
[7]   Defect depth retrieval from pulsed phase thermographic data on Plexiglas and aluminum samples [J].
Ibarra-Castanedo, C ;
Maldague, X .
THERMOSENSE XXVI, 2004, 5405 :348-356
[8]   Infrared image processing and data analysis [J].
Ibarra-Castanedo, C ;
González, D ;
Klein, M ;
Pilla, M ;
Vallerand, S ;
Maldague, X .
INFRARED PHYSICS & TECHNOLOGY, 2004, 46 (1-2) :75-83
[9]   Incremental Slow Feature Analysis: Adaptive Low-Complexity Slow Feature Updating from High-Dimensional Input Streams [J].
Kompella, Varun Raj ;
Luciw, Matthew ;
Schmidhuber, Juergen .
NEURAL COMPUTATION, 2012, 24 (11) :2994-3024
[10]   Statistical analysis of IR thermographic sequences by PCA [J].
Marinetti, S ;
Grinzato, E ;
Bison, PG ;
Bozzi, E ;
Chimenti, M ;
Pieri, G ;
Salvetti, O .
INFRARED PHYSICS & TECHNOLOGY, 2004, 46 (1-2) :85-91