CUBULATING HYPERBOLIC FREE-BY-CYCLIC GROUPS: THE IRREDUCIBLE CASE

被引:19
作者
Hagen, Mark F. [1 ]
Wise, Daniel T. [2 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, 16 Mill Lane, Cambridge CB2 1SB, England
[2] McGill Univ, Dept Math & Stat, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
AUTOMORPHISMS; FINITENESS; THEOREM;
D O I
10.1215/00127094-3450752
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be a finite graph, and let phi : V -> V be an irreducible train track map whose mapping torus has word-hyperbolic fundamental group G. Then G acts freely and cocompactly on a CAT(0) cube complex. Hence, if F is a finite-rank free group and if Phi : F -> F is an irreducible monomorphism so that G = F-*Phi:. is word-hyperbolic, then G acts freely and cocompactly on a CAT(0) cube complex. This holds, in particular, if 01) is an irreducible automorphism with G = F (x Phi) Z word-hyperbolic.
引用
收藏
页码:1753 / 1813
页数:61
相关论文
共 27 条
[1]  
Agol I, 2013, DOC MATH, V18, P1045
[2]  
Bergeron N, 2012, AM J MATH, V134, P843
[3]   The Tits alternative for out(Fn) I:: Dynamics of exponentially-growing automorphisms [J].
Bestvina, M ;
Feighn, M ;
Handel, M .
ANNALS OF MATHEMATICS, 2000, 151 (02) :517-623
[4]   TRAIN TRACKS AND AUTOMORPHISMS OF FREE GROUPS [J].
BESTVINA, M ;
HANDEL, M .
ANNALS OF MATHEMATICS, 1992, 135 (01) :1-51
[5]  
BESTVINA M, 1992, J DIFFER GEOM, V35, P85
[6]   Laminations, trees, and irreducible automorphisms of free groups [J].
Bestvina, M ;
Feighn, M ;
Handel, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1997, 7 (02) :215-244
[7]  
BRIDSON M. R., 1999, GRUND MATH WISS, V319, DOI [10.1007/978-3-662-12494-9, DOI 10.1007/978-3-662-12494-9.]
[8]   Hyperbolic automorphisms of free groups [J].
Brinkmann, P .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (05) :1071-1089
[9]   BUNDLES AND FINITE FOLIATIONS [J].
COOPER, D ;
LONG, DD ;
REID, AW .
INVENTIONES MATHEMATICAE, 1994, 118 (02) :255-283
[10]  
Dicks W., 1996, CONT MATH, V195, P1