Invariant subspaces and Nevanlinna-Pick kernels

被引:90
作者
McCullough, S
Trent, TT
机构
[1] Univ Florida, Dept Math, Gainesville, FL USA
[2] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
基金
美国国家科学基金会;
关键词
Beurling-Lax Halmos; NP kernel;
D O I
10.1006/jfan.2000.3664
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A theorem of Beurling Lax Halmos represents a subspace M of H-E(2)(D) the Hardy space of analytic functions with values in the Hilbert space E and square summable power series invariant for multiplication by z as PhiH(F)(2), where F is a subspace of E and Phi is an inner function with values in L(F, E). When the Hardy space is replaced by the Hilbert space H(k) determined by a Nevanlinna-Pick kernel k, such as the Dirichlet kernel or the row contraction kernel on the ball in C-d, the BLH Theorem survives with F an auxiliary Hilbert space and Phi a L(F, E) valued function which as inner in the sense that the operator M-Phi of multiplication by Phi is a partial isometry. Under mild additional hypotheses, when E = C. M-z, the operator of multiplication by z, is cellularly indecomposable and has the codimension one property: however, if M is invariant for M-z, M - M-z, M need not be a cyclic subspace for M-z restricted to M. (C) 2000 Academic Press.
引用
收藏
页码:226 / 249
页数:24
相关论文
共 17 条
[1]  
Agler J, 1999, J REINE ANGEW MATH, V506, P191
[2]   m-Isometric transformations of Hilbert space .3. [J].
Agler, J ;
Stankus, H .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1996, 24 (04) :379-421
[3]  
AGLER J, 1990, OPER THEORY ADV APPL, V48
[4]  
AGLER J, UNPUB INTERPOLATION
[5]   Beurling's theorem for the Bergman space [J].
Aleman, A ;
Richter, S ;
Sundberg, C .
ACTA MATHEMATICA, 1996, 177 (02) :275-310
[6]   Subalgebras of C*-algebras III: Multivariable operator theory [J].
Arveson, W .
ACTA MATHEMATICA, 1998, 181 (02) :159-228
[7]   Unitary colligations, reproducing Kernel Hilbert spaces, and Nevanlinna-Pick interpolation in several variables [J].
Ball, JA ;
Trent, TT .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 157 (01) :1-61
[8]  
BALLO JA, INTERPOLATION COMMUT
[9]   Projective modules and Hilbert spaces with a Nevanlinna-Pick kernel [J].
Clancy, RS ;
McCullough, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (11) :3299-3305
[10]  
Hedenmalm H., 1992, COMPLEX VARIABLES, V19, P165