Event Localization in Continuous Crystal Scintillation Cameras using Distribution Matching Neural Networks

被引:0
作者
Rodriguez Colmeiro, Ramiro [1 ,2 ,3 ]
Verrastro, Claudio [3 ,4 ]
Minsky, Daniel [1 ,4 ]
Grosges, Thomas [2 ]
机构
[1] Natl Sci & Tech Res Council CONICET, C1425FQB, RA-2290 Buenos Aires, DF, Argentina
[2] Univ Technol Troyes, 12 Rue Marie Curie,CS 42060, F-10004 Troyes, France
[3] Univ Tecnol Nacl, Sarmiento 440,C1041AAJ, Buenos Aires, DF, Argentina
[4] Comis Nacl Energia Atom, Av Libertador 8250,C1429BNP, Buenos Aires, DF, Argentina
来源
2021 ARGENTINE CONFERENCE ON ELECTRONICS (CAE 2021) | 2021年
关键词
Monolithic Scintillator; Event Positioning; Neural Networks; Gamma Camera; Positron Emission Tomography (PET); ANGER; POSITION; DEPTH; DETECTORS; EMISSION;
D O I
10.1109/CAE51562.2021.9397557
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The localization of gamma interactions on solid scintillation crystals is normally estimated from the light distribution of the crystal's scintillation. The estimation of the interaction position is not an error nor bias free process, mostly due to light reflections within the crystal. Complex models exist to reduce this effect. These methods often rely on calibration measurements performed with collimated beams along the crystal's surface, making the process slow and troublesome. This paper presents a method to improve the interaction position estimation based on neural networks and an interaction distribution matching loss. The method requires only a flood acquisition with known interaction distribution. The neural network does not need a dataset with matched "light distribution-interaction position" data. The method is tested using an experimental acquisition and Monte Carlo simulation of a large scintillation camera composed of a 406.4 . 304.8 . 25.4 mm(3) continuous NaI(TI) crystal. The method improves the interaction localization and reduce the edge packing effects of the center of gravity algorithm, increasing the detector's effective area from 48.7% to 72.1%. Moreover the method is able to estimate depth of iteration.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 50 条
  • [11] Event Classification in Distribution Networks Using a Quotient Gradient System
    Khodabandehlou, Hamid
    Niazazari, Iman
    Livani, Hanif
    Fadali, M. Sami
    2019 51ST NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2019,
  • [12] Mobile robot localization using the Hough transform and neural networks
    Yun, XP
    Latt, K
    Glennon, JS
    JOINT CONFERENCE ON THE SCIENCE AND TECHNOLOGY OF INTELLIGENT SYSTEMS, 1998, : 393 - 400
  • [13] CSI Based Indoor Localization Using Ensemble Neural Networks
    Sobehy, Abdallah
    Renault, Eric
    Muhlethaler, Paul
    MACHINE LEARNING FOR NETWORKING (MLN 2019), 2020, 12081 : 367 - 378
  • [14] Temporal separation of Cerenkov radiation and scintillation using artificial neural networks in Clinical LINACs
    Madden, Levi
    Archer, James
    Li, Enbang
    Wilkinson, Dean
    Rosenfeld, Anatoly
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2018, 54 : 131 - 136
  • [15] On the Fundamental Limits of the Position Resolution of Position-Sensitive Scintillation Detector Using Continuous Crystal
    Gal, J.
    Imrek, J.
    Kalinka, G.
    Kiraly, B.
    Nagy, F.
    Nyako, B. M.
    Molnar, J.
    Valastyan, I.
    Balkay, L.
    Kis, S. A.
    2011 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2011, : 3684 - 3689
  • [16] Discretizing continuous neural networks using a polarization learning rule
    Wang, LF
    Cheng, HD
    PATTERN RECOGNITION, 1997, 30 (02) : 253 - 260
  • [17] Estimation of K distribution parameters using neural networks
    Wachowiak, MP
    Smolíková, R
    Zurada, JM
    Elmaghraby, AS
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2002, 49 (06) : 617 - 620
  • [18] A framework for post-event timeline reconstruction using neural networks
    Khan, M. N. A.
    Chatwin, C. R.
    Young, R. C. D.
    DIGITAL INVESTIGATION, 2007, 4 (3-4) : 146 - 157
  • [19] RSS Localization Using an Optimized Fusion of Two Deep Neural Networks
    Mahdavi, Fatemeh
    Zayyani, Hadi
    Rajabi, Roozbeh
    IEEE SENSORS LETTERS, 2021, 5 (12)
  • [20] Localization and identification of structural nonlinearities using cascaded optimization and neural networks
    Koyuncu, A.
    Cigeroglu, E.
    Ozguven, H. N.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 95 : 219 - 238