Event Localization in Continuous Crystal Scintillation Cameras using Distribution Matching Neural Networks

被引:0
作者
Rodriguez Colmeiro, Ramiro [1 ,2 ,3 ]
Verrastro, Claudio [3 ,4 ]
Minsky, Daniel [1 ,4 ]
Grosges, Thomas [2 ]
机构
[1] Natl Sci & Tech Res Council CONICET, C1425FQB, RA-2290 Buenos Aires, DF, Argentina
[2] Univ Technol Troyes, 12 Rue Marie Curie,CS 42060, F-10004 Troyes, France
[3] Univ Tecnol Nacl, Sarmiento 440,C1041AAJ, Buenos Aires, DF, Argentina
[4] Comis Nacl Energia Atom, Av Libertador 8250,C1429BNP, Buenos Aires, DF, Argentina
来源
2021 ARGENTINE CONFERENCE ON ELECTRONICS (CAE 2021) | 2021年
关键词
Monolithic Scintillator; Event Positioning; Neural Networks; Gamma Camera; Positron Emission Tomography (PET); ANGER; POSITION; DEPTH; DETECTORS; EMISSION;
D O I
10.1109/CAE51562.2021.9397557
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The localization of gamma interactions on solid scintillation crystals is normally estimated from the light distribution of the crystal's scintillation. The estimation of the interaction position is not an error nor bias free process, mostly due to light reflections within the crystal. Complex models exist to reduce this effect. These methods often rely on calibration measurements performed with collimated beams along the crystal's surface, making the process slow and troublesome. This paper presents a method to improve the interaction position estimation based on neural networks and an interaction distribution matching loss. The method requires only a flood acquisition with known interaction distribution. The neural network does not need a dataset with matched "light distribution-interaction position" data. The method is tested using an experimental acquisition and Monte Carlo simulation of a large scintillation camera composed of a 406.4 . 304.8 . 25.4 mm(3) continuous NaI(TI) crystal. The method improves the interaction localization and reduce the edge packing effects of the center of gravity algorithm, increasing the detector's effective area from 48.7% to 72.1%. Moreover the method is able to estimate depth of iteration.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 50 条
  • [1] A scintillation light radial distribution model for monolithic crystal gamma cameras
    Galasso, M.
    Borrazzo, C.
    Fabbri, A.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2015, 786 : 40 - 46
  • [2] Radiometric calibration of digital cameras using neural networks
    Grunwald, Michael
    Laube, Pascal
    Schall, Martin
    Gumlauf, Geor
    Franz, Matthias O.
    OPTICS AND PHOTONICS FOR INFORMATION PROCESSING XI, 2017, 10395
  • [3] POINT MATCHING USING ASYMMETRIC NEURAL NETWORKS
    VINOD, VV
    GHOSE, S
    PATTERN RECOGNITION, 1993, 26 (08) : 1207 - 1214
  • [4] Localization of Scattering Objects Using Neural Networks
    Haffner, Domonkos
    Izsak, Ferenc
    SENSORS, 2021, 21 (01) : 1 - 15
  • [5] QR CODE LOCALIZATION USING DEEP NEURAL NETWORKS
    Grosz, Tamas
    Bodnar, Peter
    Toth, Laszlo
    Nyul, Laszlo G.
    2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2014,
  • [6] The functional localization of neural networks using genetic algorithms
    Tsukimoto, H
    Hatano, H
    NEURAL NETWORKS, 2003, 16 (01) : 55 - 67
  • [7] LOCALIZATION OF WINDING SHORTS USING FUZZIFIED NEURAL NETWORKS
    ELSHARKAWI, MA
    MARKS, RJ
    OH, S
    HUANG, SJ
    KERSZENBAUM, I
    RODRIGUEZ, A
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 1995, 10 (01) : 140 - 146
  • [8] Using the tree representation of terms to recognize matching with neural networks
    Mareco, C
    Paccanaro, A
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (05) : 2925 - 2936
  • [9] Control of the Continuous Casting Process Using Neural Networks
    Tirian, Gelu Ovidiu
    Rusu-Anghel, Stela
    Panoiu, Manuela
    Bretotean, Camelia Pinca
    PROCEEDINGS OF THE 13TH WSEAS INTERNATIONAL CONFERENCE ON COMPUTERS, 2009, : 199 - +
  • [10] CONTINUOUS PROCESS-CONTROL USING NEURAL NETWORKS
    GUHA, A
    JOURNAL OF INTELLIGENT MANUFACTURING, 1992, 3 (04) : 217 - 228