Derivation of the Tight-Binding Approximation for Time-Dependent Nonlinear Schrodinger Equations

被引:2
作者
Sacchetti, Andrea [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dept Phys Informat & Math, Modena, Italy
来源
ANNALES HENRI POINCARE | 2020年 / 21卷 / 02期
关键词
35Q55; 81Qxx; 81T25; BEHAVIOR;
D O I
10.1007/s00023-019-00872-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider the nonlinear one-dimensional time-dependent Schrodinger equation with a periodic potential and a bounded perturbation. In the limit of large periodic potential, the time behavior of the wavefunction can be approximated, with a precise estimate of the remainder term, by means of the solution to the discrete nonlinear Schrodinger equation of the tight-binding model.
引用
收藏
页码:627 / 648
页数:22
相关论文
共 50 条
[21]   Global and blow-up solutions for compressible Euler equations with time-dependent damping [J].
Chen, Shaohua ;
Li, Haitong ;
Li, Jingyu ;
Mei, Ming ;
Zhang, Kaijun .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (09) :5035-5077
[22]   Blow up of solutions to 1-d Euler equations with time-dependent damping [J].
Pan, Xinghong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 442 (02) :435-445
[23]   Coupled nonlinear and time-dependent analysis for long span cable-stayed bridges [J].
Chen, Changsong ;
Ma, Yafei ;
Yan, Donghuang ;
Li, Zhilun .
STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2020, 16 (10) :1416-1429
[24]   TIME-DEPENDENT GLOBAL ATTRACTORS FOR THE STRONGLY DAMPED WAVE EQUATIONS WITH LOWER REGULAR FORCING TERM [J].
Mei, Xinyu ;
Sun, Tao ;
Xie, Yongqin ;
Zhu, Kaixuan .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2022, 60 (02) :653-672
[26]   Detection of different possible responses of a time-dependent nonlinear periodic chain with local and global potentials [J].
Labetoulle, A. ;
Savadkoohi, A. Ture ;
Gourdon, E. .
CHAOS SOLITONS & FRACTALS, 2024, 186
[27]   Improved nonlinear Burgers shear creep model based on the time-dependent shear strength for rock [J].
Lin, Hang ;
Zhang, Xing ;
Cao, Rihong ;
Wen, Zhijie .
ENVIRONMENTAL EARTH SCIENCES, 2020, 79 (06)
[28]   Analytical solutions and asymptotic profiles of vacuum free boundary for the compressible Euler equations with time-dependent damping [J].
Li, Kunquan ;
Jia, Jia ;
Zhang, Meng ;
Guo, Zhengguang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 547 (02)
[29]   GLOBAL EXISTENCE AND BLOWUP OF SMOOTH SOLUTIONS OF 3-D POTENTIAL EQUATIONS WITH TIME-DEPENDENT DAMPING [J].
Hou, Fei ;
Witt, Ingo ;
Yin, Huicheng .
PACIFIC JOURNAL OF MATHEMATICS, 2018, 292 (02) :389-426
[30]   Second order asymptotic expansion for wave equations with time-dependent dissipation in one-space dimension [J].
Wakasugi, Yuta .
ASYMPTOTIC ANALYSIS FOR NONLINEAR DISPERSIVE AND WAVE EQUATIONS, 2019, 81 :401-419