Balanced Neighborhood Classifiers for Imbalanced Data Sets

被引:0
|
作者
Zhu, Shunzhi [1 ]
Ma, Ying [1 ]
Pan, Weiwei [1 ]
Zhu, Xiatian [2 ]
Luo, Guangchun [3 ]
机构
[1] Xiamen Univ Technol, Xiamen, Peoples R China
[2] Queen Mary Univ London, London E1 4NS, England
[3] Univ Elect Sci & Technol China, Chengdu 610054, Peoples R China
来源
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS | 2014年 / E97D卷 / 12期
基金
中国国家自然科学基金;
关键词
machine learning; class imbalance; class distribution; classification; ALGORITHMS;
D O I
10.1587/transinf.2014EDL8064
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A Balanced Neighborhood Classifier (BNEC) is proposed for class imbalanced data. This method is not only well positioned to capture the class distribution information, but also has the good merits of high-fitting-performance and simplicity. Experiments on both synthetic and real data sets show its effectiveness.
引用
收藏
页码:3226 / 3229
页数:4
相关论文
共 50 条
  • [31] Class imbalance should not throw you off balance: Choosing the right classifiers and performance metrics for brain decoding with imbalanced data
    Tholke, Philipp
    Mantilla-Ramos, Yorguin-Jose
    Abdelhedi, Hamza
    Maschke, Charlotte
    Dehgan, Arthur
    Harel, Yann
    Kemtur, Anirudha
    Berrada, Loubna Mekki
    Sahraoui, Myriam
    Young, Tammy
    Pepin, Antoine Bellemare
    El Khantour, Clara
    Landry, Mathieu
    Pascarella, Annalisa
    Hadid, Vanessa
    Combrisson, Etienne
    O'Byrne, Jordan
    Jerbi, Karim
    NEUROIMAGE, 2023, 277
  • [32] Neighborhood repartition-based oversampling algorithm for multiclass imbalanced data with label noise
    Shen, Shiyi
    Li, Zhixin
    Huan, Zhan
    Shang, Fanqi
    Wang, Yongsong
    Chen, Ying
    NEUROCOMPUTING, 2024, 600
  • [33] A comparative study on noise filtering of imbalanced data sets
    Szeghalmy, Szilvia
    Fazekas, Attila
    KNOWLEDGE-BASED SYSTEMS, 2024, 301
  • [34] Fuzzy rough classifiers for class imbalanced multi-instance data
    Vluymans, Sarah
    Tarrago, Danel Sanchez
    Saeys, Yvan
    Cornelis, Chris
    Herrera, Francisco
    PATTERN RECOGNITION, 2016, 53 : 36 - 45
  • [35] Multi-class and feature selection extensions of Roughly Balanced Bagging for imbalanced data
    Lango, Mateusz
    Stefanowski, Jerzy
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2018, 50 (01) : 97 - 127
  • [36] Clustering Based Bagging Algorithm on Imbalanced Data Sets
    Sun, Xiao-Yan
    Zhang, Hua-Xiang
    Wang, Zhi-Chao
    INTEGRATED UNCERTAINTY IN KNOWLEDGE MODELLING AND DECISION MAKING, 2011, 7027 : 179 - 186
  • [37] Online Nonlinear AUC Maximization for Imbalanced Data Sets
    Hu, Junjie
    Yang, Haiqin
    Lyu, Michael R.
    King, Irwin
    So, Anthony Man-Cho
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (04) : 882 - 895
  • [38] Application of the Gravitational Search Algorithm for Constructing Fuzzy Classifiers of Imbalanced Data
    Bardamova, Marina
    Hodashinsky, Ilya
    Konev, Anton
    Shelupanov, Alexander
    SYMMETRY-BASEL, 2019, 11 (12):
  • [39] FUZZY AND SMOTE RESAMPLING TECHNIQUE FOR IMBALANCED DATA SETS
    Zorkeflee, Maisarah
    Din, Aniza Mohamed
    Ku-Mahamud, Ku Ruhana
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON COMPUTING & INFORMATICS, 2015, : 638 - 643
  • [40] Globalized Multiple Balanced Subsets With Collaborative Learning for Imbalanced Data
    Zhu, Zonghai
    Wang, Zhe
    Li, Dongdong
    Du, Wenli
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (04) : 2407 - 2417