Balanced Neighborhood Classifiers for Imbalanced Data Sets

被引:0
|
作者
Zhu, Shunzhi [1 ]
Ma, Ying [1 ]
Pan, Weiwei [1 ]
Zhu, Xiatian [2 ]
Luo, Guangchun [3 ]
机构
[1] Xiamen Univ Technol, Xiamen, Peoples R China
[2] Queen Mary Univ London, London E1 4NS, England
[3] Univ Elect Sci & Technol China, Chengdu 610054, Peoples R China
来源
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS | 2014年 / E97D卷 / 12期
基金
中国国家自然科学基金;
关键词
machine learning; class imbalance; class distribution; classification; ALGORITHMS;
D O I
10.1587/transinf.2014EDL8064
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A Balanced Neighborhood Classifier (BNEC) is proposed for class imbalanced data. This method is not only well positioned to capture the class distribution information, but also has the good merits of high-fitting-performance and simplicity. Experiments on both synthetic and real data sets show its effectiveness.
引用
收藏
页码:3226 / 3229
页数:4
相关论文
共 50 条
  • [21] Comparing the performance of meta-classifiers—a case study on selected imbalanced data sets relevant for prediction of liver toxicity
    Sankalp Jain
    Eleni Kotsampasakou
    Gerhard F. Ecker
    Journal of Computer-Aided Molecular Design, 2018, 32 : 583 - 590
  • [22] On Validation Setup for Multiclass Imbalanced Data Sets
    Silva, Evandro J. R.
    Zanchettin, Cleber
    PROCEEDINGS OF 2016 5TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS 2016), 2016, : 468 - 473
  • [23] Large margin classifiers to generate synthetic data for imbalanced datasets
    Ladeira Marques, Marcelo
    Moraes Villela, Saulo
    Hasenclever Borges, Carlos Cristiano
    APPLIED INTELLIGENCE, 2020, 50 (11) : 3678 - 3694
  • [24] DatRel: a noise-tolerant data relocation approach for effective synthetic data generation in imbalanced classifiers
    Saglam, Fatih
    MACHINE LEARNING, 2025, 114 (05)
  • [25] Random Balance: Ensembles of variable priors classifiers for imbalanced data
    Diez-Pastor, Jose F.
    Rodriguez, Juan J.
    Garcia-Osorio, Cesar
    Kuncheva, Ludmila I.
    KNOWLEDGE-BASED SYSTEMS, 2015, 85 : 96 - 111
  • [26] Active Learning with Abstaining Classifiers for Imbalanced Drifting Data Streams
    Korycki, Lukasz
    Cano, Alberto
    Krawczyk, Bartosz
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 2334 - 2343
  • [27] Ensemble of Classifiers Based on Multiobjective Genetic Sampling for Imbalanced Data
    Fernandes, Everlandio R. Q.
    de Carvalho, Andre C. P. L. F.
    Yao, Xin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (06) : 1104 - 1115
  • [28] Hellinger distance decision trees for PU learning in imbalanced data sets
    Vazquez, Carlos Ortega
    vanden Broucke, Seppe
    De Weerdt, Jochen
    MACHINE LEARNING, 2024, 113 (07) : 4547 - 4578
  • [29] Classifying imbalanced data sets using similarity based hierarchical decomposition
    Beyan, Cigdem
    Fisher, Robert
    PATTERN RECOGNITION, 2015, 48 (05) : 1653 - 1672
  • [30] DTO-SMOTE: Delaunay Tessellation Oversampling for Imbalanced Data Sets
    de Carvalho, Alexandre M.
    Prati, Ronaldo C.
    INFORMATION, 2020, 11 (12) : 1 - 22