Structure and stability of small H clusters on graphene

被引:37
作者
Sljivancanin, Zeljko [1 ,2 ,3 ]
Andersen, Mie [1 ,2 ]
Hornekaer, Liv [1 ,2 ]
Hammer, Bjork [1 ,2 ]
机构
[1] Aarhus Univ, Interdisciplinary Nanosci Ctr iNANO, DK-8000 Aarhus C, Denmark
[2] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
[3] Vinca Inst Nucl Sci 020, Belgrade 11001, Serbia
关键词
HYDROGEN-STORAGE; ATOMIC-HYDROGEN; GRAPHITE; ADSORPTION; RECOMBINATION; H-2;
D O I
10.1103/PhysRevB.83.205426
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The structure and stability of small hydrogen clusters adsorbed on graphene is studied by means of density functional theory (DFT) calculations. Clusters containing up to six H atoms are investigated systematically, with the clusters having either all H atoms on one side of the graphene sheet (cis-clusters) or having the H atoms on both sides in an alternating manner (trans-clusters). The most stable cis-clusters found have H atoms in ortho- and para-positions with respect to each other (two H's on neighboring or diagonally opposite carbon positions within one carbon hexagon), while the most stable trans-clusters found have H atoms in ortho-trans-positions with respect to each other (two H's on neighboring carbon positions, but on opposite sides of the graphene). Very stable trans-clusters with 13-22 H atoms were identified by optimizing the number of H atoms in ortho-trans-positions and thereby the number of closed, H-covered carbon hexagons. For the cis-clusters, the associative H-2 desorption was investigated. Generally, the desorption with the lowest activation energy proceeds via para-cis-dimer states, i.e., involving somewhere in the H clusters two H atoms that are positioned on opposite sites within one carbon hexagon. H-2 desorption from clusters lacking such H pairs is calculated to occur via hydrogen diffusion causing the formation of para-cis-dimer states. Studying the diffusion events showed a strong dependence of the diffusion energy barriers on the reaction energies and a general odd-even dependence on the number of H atoms in the cis-clusters.
引用
收藏
页数:10
相关论文
共 50 条
[1]  
[Anonymous], 1998, CLASSICAL QUANTUM DY
[2]   An object-oriented scripting interface to a legacy electronic structure code [J].
Bahn, SR ;
Jacobsen, KW .
COMPUTING IN SCIENCE & ENGINEERING, 2002, 4 (03) :56-66
[3]  
Balog R, 2010, NAT MATER, V9, P315, DOI [10.1038/nmat2710, 10.1038/NMAT2710]
[4]   Atomic Hydrogen Adsorbate Structures on Graphene [J].
Balog, Richard ;
Jorgensen, Bjarke ;
Wells, Justin ;
Laegsgaard, Erik ;
Hofmann, Philip ;
Besenbacher, Flemming ;
Hornekaer, Liv .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (25) :8744-+
[5]   Translational energy and state resolved observations of D and D2 thermally desorbing from D clusters chemisorbed on graphite [J].
Baouche, S. ;
Hornekaer, L. ;
Baurichter, A. ;
Luntz, A. C. ;
Petrunin, V. V. ;
Sljivancanin, Z. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (24)
[6]   Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Lichtenstein, A. I. .
PHYSICAL REVIEW B, 2008, 77 (03)
[7]   Understanding adsorption of hydrogen atoms on graphene [J].
Casolo, Simone ;
Lovvik, Ole Martin ;
Martinazzo, Rocco ;
Tantardini, Gian Franco .
JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (05)
[8]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[9]   Formation on grain surfaces [J].
Cazaux, S ;
Tielens, AGGM .
ASTROPHYSICAL JOURNAL, 2004, 604 (01) :222-237
[10]   SPECIAL POINTS IN BRILLOUIN ZONE [J].
CHADI, DJ ;
COHEN, ML .
PHYSICAL REVIEW B, 1973, 8 (12) :5747-5753