Scanning gate imaging of quantum point contacts and the origin of the 0.7 anomaly

被引:6
作者
Iagallo, Andrea [1 ,2 ]
Paradiso, Nicola [1 ,2 ]
Roddaro, Stefano [1 ,2 ,3 ]
Reichl, Christian [4 ]
Wegscheider, Werner [4 ]
Biasiol, Giorgio [3 ]
Sorba, Lucia [1 ,2 ]
Beltram, Fabio [1 ,2 ]
Heun, Stefan [1 ,2 ]
机构
[1] CNR, Ist Nanosci, Natl Enterprise Nanosci & Nanotechnol NEST, I-56127 Pisa, Italy
[2] Scuola Normale Super Pisa, I-56127 Pisa, Italy
[3] Ist Offcina Mat CNR, Lab TASC, I-34149 Trieste, Italy
[4] ETH, Solid State Phys Lab, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
two-dimensional electron gas (2-DEG); scanning gate microscopy; 0.7; anomaly; ONE-DIMENSIONAL CONSTRICTION; GAAS/ALGAAS HETEROSTRUCTURES; BRANCHED FLOW; ELECTRON-GAS; TRANSPORT; MICROSCOPY; SCATTERING; CHANNEL; WIRES; PROBE;
D O I
10.1007/s12274-014-0576-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The origin of the anomalous transport feature appearing at a conductance G approximate to 0.7 x (2e(2)/h) in quasi-1D ballistic devices-the so-called 0.7 anomaly-represents a long standing puzzle. Several mechanisms have been proposed to explain it, but a general consensus has not been achieved. Proposed explanations have been based on quantum interference, the Kondo effect, Wigner crystallization, and other phenomena. A key open issue is whether the point defects that can occur in these low-dimensional devices are the physical cause behind this conductance anomaly. Here we adopt a scanning gate microscopy technique to map individual impurity positions in several quasi-1D constrictions and correlate these with conductance characteristics. Our data demonstrate that the 0.7 anomaly can be observed irrespective of the presence of localized defects, and we conclude that the 0.7 anomaly is a fundamental property of low-dimensional systems.
引用
收藏
页码:948 / 956
页数:9
相关论文
共 50 条
  • [41] Temperature modulation of the transmission barrier in quantum point contacts
    Sanchez, Alfredo X.
    Leburton, Jean-Pierre
    PHYSICAL REVIEW B, 2013, 88 (07)
  • [42] Electrostatically Induced Quantum Point Contacts in Bilayer Graphene
    Overweg, Hiske
    Eggimann, Hannah
    Chen, Xi
    Slizovskiy, Sergey
    Eich, Marius
    Pisoni, Riccardo
    Lee, Yongjin
    Rickhaus, Peter
    Watanabe, Kenji
    Taniguch, Takashi
    Fal'ko, Vladimir
    Ihn, Thomas
    Ensslin, Klaus
    NANO LETTERS, 2018, 18 (01) : 553 - 559
  • [43] Scanning gate imaging of transport within an InGaAs QPC
    Aoki, N.
    da Cunha, C. R.
    Morimoto, T.
    Akis, R.
    Ferry, D. K.
    Ochiai, Y.
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 715 - +
  • [44] Microscopic origin of the 1.3 G0 conductance observed in oxygen-doped silver quantum point contacts
    Tu, Xingchen
    Wang, Minglang
    Sanvito, Stefano
    Hou, Shimin
    JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (19)
  • [45] Scanning gate microscopy of quantum rings: effects of an external magnetic field and of charged defects
    Pala, M. G.
    Baltazar, S.
    Martins, F.
    Hackens, B.
    Sellier, H.
    Ouisse, T.
    Bayot, V.
    Huant, S.
    NANOTECHNOLOGY, 2009, 20 (26)
  • [46] Formation of quantum dots in the potential fluctuations of InGaAs heterostructures probed by scanning gate microscopy
    Liu, P.
    Martins, F.
    Hackens, B.
    Desplanque, L.
    Wallart, X.
    Pala, M. G.
    Huant, S.
    Bayot, V.
    Sellier, H.
    PHYSICAL REVIEW B, 2015, 91 (07):
  • [48] Evidence for charging effects in CdTe/CdMgTe quantum point contacts
    Czapkiewicz, M.
    Kolkovsky, V.
    Nowicki, P.
    Wiater, M.
    Wojciechowski, T.
    Wojtowicz, T.
    Wrobel, J.
    PHYSICAL REVIEW B, 2012, 86 (16):
  • [49] Conductance oscillations in quantum point contacts of InAs/GaSb heterostructures
    Papaj, Michal
    Cywinski, Lukasz
    Wrobel, Jerzy
    Dietl, Tomasz
    PHYSICAL REVIEW B, 2016, 93 (19)
  • [50] Fabrication and characterisation of gallium arsenide ambipolar quantum point contacts
    Chen, J. C. H.
    Klochan, O.
    Micolich, A. P.
    Das Gupta, K.
    Sfigakis, F.
    Ritchie, D. A.
    Trunov, K.
    Reuter, D.
    Wieck, A. D.
    Hamilton, A. R.
    APPLIED PHYSICS LETTERS, 2015, 106 (18)