λ′-optimally connected mixed Cayley graphs

被引:6
作者
Tian, Yingzhi [1 ]
Meng, Jixiang [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
关键词
Restricted edge connectivity; lambda '-optimal; Mixed Cayley graph; Combinatorial problems; SUFFICIENT CONDITIONS; EDGE-CONNECTIVITY;
D O I
10.1016/j.aml.2010.12.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A restricted edge cut of a graph X is an edge set whose removal disconnects X into nontrivial components. The cardinality of the minimum restricted edge cut is the restricted edge connectivity, denoted by lambda '(X). If X has restricted edge cuts and lambda '(X) achieves the upper bound of the restricted edge connectivity, X is said to be lambda'-optimal. In this work, we will prove that for all but a few exceptions, the mixed Cayley graph is lambda'-optimal. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:872 / 877
页数:6
相关论文
共 13 条
[1]   Sufficient conditions for λ′-optirnality in graphs with girth g [J].
Balbuena, C ;
García-Vázquez, P ;
Marcote, X .
JOURNAL OF GRAPH THEORY, 2006, 52 (01) :73-86
[2]   Sufficient conditions for λ′-optimality of graphs with small conditional diameter [J].
Balbuena, C ;
Cera, M ;
Diánez, A ;
García-Vázquez, P ;
Marcote, X .
INFORMATION PROCESSING LETTERS, 2005, 95 (04) :429-434
[3]  
Bondy J. A., 1976, Graduate Texts in Mathematics, V290
[4]   Super edge-connectivity of mixed Cayley graph [J].
Chen, Jinyang ;
Meng, Jixiang ;
Huang, Lihong .
DISCRETE MATHEMATICS, 2009, 309 (01) :264-270
[5]   ON COMPUTING A CONDITIONAL EDGE-CONNECTIVITY OF A GRAPH [J].
ESFAHANIAN, AH ;
HAKIMI, SL .
INFORMATION PROCESSING LETTERS, 1988, 27 (04) :195-199
[6]   GENERALIZED MEASURES OF FAULT TOLERANCE WITH APPLICATION TO N-CUBE NETWORKS [J].
ESFAHANIAN, AH .
IEEE TRANSACTIONS ON COMPUTERS, 1989, 38 (11) :1586-1591
[7]   Sufficient conditions for graphs to be λ′-optimal super-edge-connected and maximally edge-connected [J].
Hellwig, A ;
Volkmann, L .
JOURNAL OF GRAPH THEORY, 2005, 48 (03) :228-246
[8]   Sufficient conditions for λ′-optimality in graphs of diameter 2 [J].
Hellwig, A ;
Volkmann, L .
DISCRETE MATHEMATICS, 2004, 283 (1-3) :113-120
[9]  
Li QL, 1999, NETWORKS, V33, P157, DOI 10.1002/(SICI)1097-0037(199903)33:2<157::AID-NET6>3.0.CO
[10]  
2-D