Exploiting input sparsity for joint state/input moving horizon estimation

被引:16
作者
Kirchner, M. [1 ,2 ]
Croes, J. [1 ,2 ]
Cosco, F. [1 ,2 ]
Desmet, W. [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Mech Engn, Celestijnenlaan 300 Box 2420, B-3001 Leuven, Belgium
[2] Flanders Make, Lommel, Belgium
关键词
State estimation; Input estimation; Moving horizon estimation; l(1)-norm optimization; Compressive sensing; COMPRESSED SENSING TECHNIQUES; MINIMUM-VARIANCE INPUT; TIRE FORCE ESTIMATION; STATE ESTIMATION; IDENTIFICATION; RECONSTRUCTION; DAMAGE;
D O I
10.1016/j.ymssp.2017.08.024
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper proposes a novel time domain approach for joint state/input estimation of mechanical systems. The novelty consists of exploiting compressive sensing (CS) principles in a moving horizon estimator (MHE), allowing the observation of a large number of input locations given a small set of measurements. Existing techniques are characterized by intrinsic limitations when estimating multiple input locations, due to an observability decrease. Moreover, CS does not require an input to be characterized by a slow dynamics, which is a requirement of other state of the art techniques for input modeling. In the new approach, called compressive sensing-moving horizon estimator (CS-MHE), the capability of the MHE of minimizing the noise while correlating a model with measurements is enriched with an-norm optimization in order to promote a sparse solution for the input estimation. A numerical example shows that the CS-MHE allows for an unknown input estimation in terms of magnitude, time and location, exploiting the assumption that the input is sparse in time and space. Finally, an experimental setup is presented as validation case. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:237 / 253
页数:17
相关论文
共 53 条
  • [1] [Anonymous], REACTIVE FLOWS DIFFU, DOI DOI 10.1007/978-3-540-28396-6_6
  • [2] Improved fault detection and diagnosis using sparse global-local preserving projections
    Bao, Shiyi
    Luo, Lijia
    Mao, Jianfeng
    Tang, Di
    [J]. JOURNAL OF PROCESS CONTROL, 2016, 47 : 121 - 135
  • [3] IEEE-SPS and connexions - An open access education collaboration
    Baraniuk, Richard G.
    Burrus, C. Sidney
    Thierstein, E. Joel
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2007, 24 (06) : 6 - +
  • [4] Covariance matrices for parameter estimates of constrained parameter estimation problems
    Bock, Hans Georg
    Kostina, Ekaterina
    Kostyukova, Olga
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (02) : 626 - 642
  • [5] Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information
    Candès, EJ
    Romberg, J
    Tao, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) : 489 - 509
  • [6] Decoding by linear programming
    Candes, EJ
    Tao, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) : 4203 - 4215
  • [7] The restricted isometry property and its implications for compressed sensing
    Candes, Emmanuel J.
    [J]. COMPTES RENDUS MATHEMATIQUE, 2008, 346 (9-10) : 589 - 592
  • [8] Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
  • [9] Methods for Sparse Signal Recovery Using Kalman Filtering With Embedded Pseudo-Measurement Norms and Quasi-Norms
    Carmi, Avishy
    Gurfil, Pini
    Kanevsky, Dimitri
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (04) : 2405 - 2409
  • [10] Charles A., 2011, 45th Annual Conference on Information Sciences and Systems (CISS), P1, DOI DOI 10.1109/CISS.2011.5766179