New family of Abelian integrals satisfying Chebyshev property

被引:5
作者
Cen, Xiuli [1 ]
Liu, Changjian [1 ]
Zhao, Yulin [1 ]
机构
[1] Sun Yat Sen Univ, Sch Math Zhuhai, Zhuhai 519082, Guangdong, Peoples R China
关键词
Abelian integral; Chebyshev property; Non-algebraic first integral; LIMIT-CYCLES; SYSTEMS; NUMBER;
D O I
10.1016/j.jde.2019.11.060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is motivated by the Chebyshev property of a family of Abelian integrals along non-algebraic level ovals. A new criterion is established to study the Chebyshev property of these Abelian integrals. As its applications, we give three examples to show that the ordered sets defined by Abelian integrals are ECT systems. Moreover, the number of the Abelian integrals can be an arbitrary positive integer. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:7561 / 7581
页数:21
相关论文
共 25 条
[1]  
[Anonymous], 2005, Qual. Theory Dyn. Syst.
[2]  
[Anonymous], 1966, Handbook of mathematical functions, with formulas, graphs, and mathematical tables
[3]  
Arnold V.I., 1977, FUNCT ANAL APPL, V11, P85
[4]  
Arnold V.I., 1990, Adv. Soviet Math, V1, P1
[5]  
Christopher C., 2007, Limit cycles of differential equations, Advanced Courses in Mathematics
[6]   On the Lambert W function [J].
Corless, RM ;
Gonnet, GH ;
Hare, DEG ;
Jeffrey, DJ ;
Knuth, DE .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) :329-359
[7]   BIRTH OF CANARD CYCLES [J].
Dumortier, Freddy ;
Roussarie, Robert .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2009, 2 (04) :723-781
[8]   Computer-assisted techniques for the verification of the Chebyshev property of Abelian integrals [J].
Figueras, Jordi-Lluis ;
Tucker, Warwick ;
Villadelprat, Jordi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (08) :3647-3663
[9]   Perturbation theory of a symmetric center within Lienard equations [J].
Francoise, Jean-Pierre ;
Xiao, Dongmei .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (06) :2408-2429
[10]   On the number of limit cycles for perturbed pendulum equations [J].
Gasull, A. ;
Geyer, A. ;
Manosas, F. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (03) :2141-2167