Constructing Graphs Which are Permanental Cospectral and Adjacency Cospectral

被引:1
作者
Wu, Tingzeng [1 ]
Lai, Hong-Jian [2 ]
机构
[1] Qinghai Nationalities Univ, Sch Math & Stat, Xining 810007, Qinghai, Peoples R China
[2] West Virginia Univ, Dept Math, Morgantown, WV 26506 USA
基金
中国国家自然科学基金;
关键词
Permanental polynomial; Characteristic polynomial; Permanental cospectral; Adjacency cospectral; PER-SPECTRAL CHARACTERIZATIONS; CHARACTERISTIC-POLYNOMIALS; MATRIX;
D O I
10.1007/s00373-018-1963-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two graphs are adjacency cospectral (respectively, permanental cospectral) if they have the same adjacency spectrum (respectively, permanental spectrum). In this paper, we present a new method to construct new adjacency cospectral and permanental cospetral pairs of graphs from smaller ones. As an application, we obtain an infinite family of pairs of Cartesian product graphs which are adjacency cospectral and permanental cospetral.
引用
收藏
页码:1713 / 1721
页数:9
相关论文
共 33 条
  • [1] [Anonymous], 1986, ANN DISCRETE MATH
  • [2] Belardo F, 2011, MATCH-COMMUN MATH CO, V66, P381
  • [3] BOROWIECKI M, 1983, LECT NOTES MATH, V1018, P75
  • [4] Borowiecki Mieczyslaw, 1982, Discuss. Math., V5, P9
  • [5] Borowiecki Mieczyslaw, 1985, Publ. Inst. Math. (Belgr.), V38, P31
  • [6] PROPERTIES OF PERMANENT FUNCTIONS
    BRENNER, JL
    [J]. ARCHIV DER MATHEMATIK, 1967, 18 (06) : 585 - &
  • [7] The permanental polynomial
    Cash, GG
    [J]. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2000, 40 (05): : 1203 - 1206
  • [8] Permanental polynomials of the smaller fullerenes
    Cash, GG
    [J]. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2000, 40 (05): : 1207 - 1209
  • [9] Chou Q, 2011, MATCH-COMMUN MATH CO, V66, P743
  • [10] Cvetkovi D.M., 2009, An Introduction to the Theory of Graph Spectra