Porous coordination polymer-based composite membranes for high-temperature polymer exchange membrane fuel cells

被引:37
作者
Chen, Guoliang [1 ]
Ge, Lei [1 ,2 ]
Lee, Joong Hee [3 ]
Zhu, Zhonghua [2 ]
Wang, Hao [1 ]
机构
[1] Univ Southern Queensland, Ctr Future Mat, Springfield Cent, Qld 4300, Australia
[2] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
[3] Jeonbuk Natl Univ, Dept Nano Convergence Engn, Jeonju Si 54896, Jeonrabug Do, South Korea
基金
澳大利亚研究理事会;
关键词
METAL-ORGANIC FRAMEWORKS; ANHYDROUS PROTON CONDUCTION; ELECTROLYTE MEMBRANES; GRAPHENE OXIDE; DEGREES-C; CRYSTALLINE; TRANSPORT; MOFS; SEPARATION; IMIDAZOLE;
D O I
10.1016/j.matt.2022.05.033
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Proton exchange membrane fuel cells (PEMFCs), promising energy -transforming devices, can directly convert the chemical energy of fuels to electricity with high efficiency (40%-60%) and low emissions. Commercial PEMFCs operating below 80 degrees C have many challenges, such as complex water management, low electrode kinetics, and catalyst toxicity. High-temperature PEMFCs (HT-PEMFCs) with higher operating temperatures (120 degrees C-250 degrees C) can address these is-sues and have much potential as next-generation PEMFCs. Proton exchange membranes (PEMs) are the heart of PEMFCs for promoting proton transfer. Traditional PEMs, such as Nafion membranes, cannot meet the operating requirements (e.g., a conductivity of 0.1 S cm(-1) at 120 degrees C, the US Department of Energy 2020 target). To meet this criterion, one promising approach to boost the insufficient proton conductivity of existing PEMs is to incorporate functional fillers into the proton-conductive membranes as the nanocomposite polymer electrolyte membranes. Porous coordination polymer (PCP)-based composite membranes have great potential as proton exchange electrolytes for high-temperature PEMFC applications. This review summarizes the materials and engineering strategies for designing PCP-based high-temperature proton ex-change composite membranes and discusses the remaining challenges as well as future research areas.
引用
收藏
页码:2031 / 2053
页数:23
相关论文
共 99 条
[1]   Can COFs replace MOFs in flue gas separation? high-throughput computational screening of COFs for CO2/N2separation [J].
Altundal, Omer Faruk ;
Altintas, Cigdem ;
Keskin, Seda .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (29) :14609-14623
[2]   Metal-organic framework anchored sulfonated poly(ether sulfone) as a high temperature proton exchange membrane for fuel cells [J].
Anahidzade, Nosaibe ;
Abdolmaleki, Amir ;
Dinari, Mohammad ;
Tadavani, Koorosh Firouz ;
Zhiani, Mohammad .
JOURNAL OF MEMBRANE SCIENCE, 2018, 565 :281-292
[3]   A comprehensive review of PBI-based high temperature PEM fuel cells [J].
Araya, Samuel Simon ;
Zhou, Fan ;
Liso, Vincenzo ;
Sahlin, Simon Lennart ;
Vang, Jakob Rabjerg ;
Thomas, Sobi ;
Gao, Xin ;
Jeppesen, Christian ;
Kaer, Soren Knudsen .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (46) :21310-21344
[4]   Enhanced transport properties of graphene-based, thin Nafion® membrane for polymer electrolyte membrane fuel cells [J].
Asmatulu, Ramazan ;
Khan, Aamer ;
Adigoppula, Vinay K. ;
Hwang, Gisuk .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2018, 42 (02) :508-519
[5]   Critical advancements in achieving high power and stable nonprecious metal catalyst-based MEAs for real-world proton exchange membrane fuel cell applications [J].
Banham, Dustin ;
Kishimoto, Takeaki ;
Zhou, Yingjie ;
Sato, Tetsutaro ;
Bai, Kyoung ;
Ozaki, Jun-ichi ;
Imashiro, Yasuo ;
Ye, Siyu .
SCIENCE ADVANCES, 2018, 4 (03)
[6]   Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs) [J].
Barjola, Arturo ;
Escorihuela, Jorge ;
Andrio, Andreu ;
Gimenez, Enrique ;
Compan, Vicente .
NANOMATERIALS, 2018, 8 (12)
[7]   Crystalline Porous Organic Polymer Bearing -SO3H Functionality for High Proton Conductivity [J].
Bhanja, Piyali ;
Paui, Arnab ;
Chatterjee, Sauvik ;
Kaneti, Yusuf Valentino ;
Na, Jongbeom ;
Sugahara, Yoshiyuki ;
Bhaumik, Asim ;
Yamauchi, Yusuke .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (06) :2423-2432
[8]   Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges [J].
Bose, Saswata ;
Kuila, Tapas ;
Thi Xuan Lien Nguyen ;
Kim, Nam Hoon ;
Lau, Kin-tak ;
Lee, Joong Hee .
PROGRESS IN POLYMER SCIENCE, 2011, 36 (06) :813-843
[9]  
Bureekaew S, 2009, NAT MATER, V8, P831, DOI [10.1038/NMAT2526, 10.1038/nmat2526]
[10]   High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) - A review [J].
Chandan, Amrit ;
Hattenberger, Mariska ;
El-Kharouf, Ahmad ;
Du, Shangfeng ;
Dhir, Aman ;
Self, Valerie ;
Pollet, Bruno G. ;
Ingram, Andrew ;
Bujalski, Waldemar .
JOURNAL OF POWER SOURCES, 2013, 231 :264-278