Effects of growth temperature and device structure on GaP solar cells grown by molecular beam epitaxy

被引:7
|
作者
Vaisman, M. [1 ]
Tomasulo, S. [1 ]
Masuda, T. [1 ]
Lang, J. R. [1 ]
Faucher, J. [1 ]
Lee, M. L. [1 ]
机构
[1] Yale Univ, Dept Elect Engn, New Haven, CT 06511 USA
基金
美国国家科学基金会;
关键词
GAAS; PERFORMANCE; SI;
D O I
10.1063/1.4908181
中图分类号
O59 [应用物理学];
学科分类号
摘要
Gallium phosphide (GaP) is an attractive candidate for wide-bandgap solar cell applications, possessing the largest bandgap of the III-arsenide/phosphides without aluminum. However, GaP cells to date have exhibited poor internal quantum efficiency (IQE), even for photons absorbed by direct transitions, motivating improvements in material quality and device structure. In this work, we investigated GaP solar cells grown by molecular beam epitaxy over a range of substrate temperatures, employing a much thinner emitter than in prior work. Higher growth temperatures yielded the best solar cell characteristics, indicative of increased diffusion lengths. Furthermore, the inclusion of an AlGaP window layer improved both open-circuit voltage and short wavelength IQE. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Study of nitrogen incorporation into GaInNAs: The role of growth temperature in molecular beam epitaxy
    Korpijarvi, V. -M.
    Aho, A.
    Laukkanen, P.
    Tukiainen, A.
    Laakso, A.
    Tuominen, M.
    Guina, M.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (02)
  • [42] Effects of band gap alignment and temperature on device performance of GaInP/Ga(In)As monolithic tandem solar cells
    Ataser, T.
    Akin, N.
    Zeybek, O.
    Ozcelik, S.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2016, 18 (9-10): : 785 - 792
  • [43] Defects in the GaAs and InGaAs layers grown by low-temperature molecular-beam epitaxy
    Lavrentieva L.G.
    Vilisova M.D.
    Bobrovnikova I.A.
    Ivonin I.V.
    Preobrazhenskii V.V.
    Chaldyshev V.V.
    Russian Physics Journal, 2006, 49 (12) : 1334 - 1343
  • [44] Reduction in the crystal defect density of ZnSe layers grown by molecular beam epitaxy
    López-López, M
    Pérez-Centeno, A
    Luyo-Alvarado, J
    Meléndez-Lira, M
    Tamura, M
    Méndez-García, VH
    Vidal, MA
    REVISTA MEXICANA DE FISICA, 2000, 46 : 148 - 152
  • [45] Growth dynamics and compositional structure in periodic InAsSb nanowire arrays on Si (111) grown by selective area molecular beam epitaxy
    Ruhstorfer, Daniel
    Lang, Armin
    Matich, Sonja
    Doeblinger, Markus
    Riedl, Hubert
    Finley, Jonathan J.
    Koblmueller, Gregor
    NANOTECHNOLOGY, 2021, 32 (13)
  • [46] Growth and Photoluminescence Properties of InSb/GaSb Nano-Stripes Grown by Molecular Beam Epitaxy
    Posri, Supeeranat
    Thainoi, Supachok
    Kiravittaya, Suwit
    Tandaechanurat, Aniwat
    Nuntawong, Noppadon
    Sopitpan, Suwat
    Yordsri, Visittapong
    Thanachayanont, Chanchana
    Kanjanachuchai, Songphol
    Ratanathammaphan, Somchai
    Panyakeow, Somsak
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2019, 216 (01):
  • [47] Influence of growth parameters on the morphology of GaAs nanowires grown on Si (111) by molecular beam epitaxy
    Arpapay, Burcu
    Duygulu, Ozgur
    Serincan, Ugur
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2020, 111
  • [48] Growth mode of tensile-strained Ge quantum dots grown by molecular beam epitaxy
    Zhang, Z. P.
    Song, Y. X.
    Chen, Q. M.
    Wu, X. Y.
    Zhu, Z. Y. S.
    Zhang, L. Y.
    Li, Y. Y.
    Wang, S. M.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (46)
  • [49] Growth of InGaAs Solar Cells on InP(001) Miscut Substrates Using Solid-Source Molecular Beam Epitaxy
    Oshima, Ryuji
    Ishitsuka, Yuki
    Okano, Yoshinobu
    Sugaya, Takeyoshi
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2020, 217 (03):
  • [50] Control of Band Gap and Band Edge Positions in Gallium-Zinc Oxynitride Grown by Molecular Beam Epitaxy
    Kraut, Max
    Sirotti, Elise
    Pantle, Florian
    Jiang, Chang-Ming
    Groetzner, Gabriel
    Koch, Marvin
    Wagner, Laura, I
    Sharp, Ian D.
    Stutzmann, Martin
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (14) : 7668 - 7676