Effects of growth temperature and device structure on GaP solar cells grown by molecular beam epitaxy

被引:7
|
作者
Vaisman, M. [1 ]
Tomasulo, S. [1 ]
Masuda, T. [1 ]
Lang, J. R. [1 ]
Faucher, J. [1 ]
Lee, M. L. [1 ]
机构
[1] Yale Univ, Dept Elect Engn, New Haven, CT 06511 USA
基金
美国国家科学基金会;
关键词
GAAS; PERFORMANCE; SI;
D O I
10.1063/1.4908181
中图分类号
O59 [应用物理学];
学科分类号
摘要
Gallium phosphide (GaP) is an attractive candidate for wide-bandgap solar cell applications, possessing the largest bandgap of the III-arsenide/phosphides without aluminum. However, GaP cells to date have exhibited poor internal quantum efficiency (IQE), even for photons absorbed by direct transitions, motivating improvements in material quality and device structure. In this work, we investigated GaP solar cells grown by molecular beam epitaxy over a range of substrate temperatures, employing a much thinner emitter than in prior work. Higher growth temperatures yielded the best solar cell characteristics, indicative of increased diffusion lengths. Furthermore, the inclusion of an AlGaP window layer improved both open-circuit voltage and short wavelength IQE. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Superconductivity in an Aluminum Film Grown by Molecular Beam Epitaxy
    Liang, C. -T.
    Yeh, M. -R.
    Lin, S. D.
    Lin, S. W.
    Wu, J. Y.
    Lin, T. L.
    Chen, Kuang Yao
    CHINESE JOURNAL OF PHYSICS, 2012, 50 (04) : 638 - 642
  • [32] Manipulation of morphology and structure of the top of GaAs nanowires grown by molecular-beam epitaxy
    Lixia Li
    Dong Pan
    Xuezhe Yu
    Hyok So
    Jianhua Zhao
    Journal of Semiconductors, 2017, (10) : 43 - 49
  • [33] ScAlInN/GaN heterostructures grown by molecular beam epitaxy
    Ye, Haotian
    Wang, Rui
    Yang, Liuyun
    Wang, Jinlin
    Wang, Tao
    Feng, Ran
    Xu, Xifan
    Lee, Wonseok
    Wang, Ping
    Wang, Xinqiang
    APPLIED PHYSICS LETTERS, 2024, 125 (12)
  • [34] Impact of growth and annealing conditions on the parameters of Ge/Si(001) relaxed layers grown by molecular beam epitaxy
    Yurasov, D. V.
    Bobrov, A. I.
    Daniltsev, V. M.
    Novikov, A. V.
    Pavlov, D. A.
    Skorokhodov, E. V.
    Shaleev, M. V.
    Yunin, P. A.
    SEMICONDUCTORS, 2015, 49 (11) : 1415 - 1420
  • [35] High-efficiency GaAs and GaInP solar cells grown by all solid-state Molecular-Beam-Epitaxy
    Lu, Shulong
    Ji, Lian
    He, Wei
    Dai, Pan
    Yang, Hui
    Arimochi, Masayuki
    Yoshida, Hiroshi
    Uchida, Shiro
    Ikeda, Masao
    NANOSCALE RESEARCH LETTERS, 2011, 6 : 1 - 4
  • [36] High-efficiency GaAs and GaInP solar cells grown by all solid-state molecular-beam-epitaxy
    Shulong Lu
    Lian Ji
    Wei He
    Pan Dai
    Hui Yang
    Masayuki Arimochi
    Hiroshi Yoshida
    Shiro Uchida
    Masao Ikeda
    Nanoscale Research Letters, 6
  • [37] Realistic Simulations and Design of GaAs Solar Cells produced by Molecular Beam Epitaxy
    Borrely, Thales
    Quivy, Alain A.
    2019 34TH SYMPOSIUM ON MICROELECTRONICS TECHNOLOGY AND DEVICES (SBMICRO 2019), 2019,
  • [38] Effects of Interruption Growth on the Properties of ZnO Active Layers Grown by Using Plasma-assisted Molecular Beam Epitaxy
    Choi, Hyun Young
    Kim, Ghun Sik
    Cho, Min Young
    Jeon, Su Min
    Kim, Do Yeob
    Kim, Min Su
    Yim, Kwang Gug
    Kim, Hyeoung Geun
    Leem, Jae-Young
    Lee, Dong-Yul
    Kim, Jin Soo
    Kim, Jong Su
    Son, Jeong-Sik
    Lee, Joo In
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2010, 57 (03) : 469 - 473
  • [39] Effects of substrate orientation on the growth of InSb nanostructures by molecular beam epitaxy
    Chou, C. Y.
    Torfi, A.
    Pei, C.
    Wang, W. I.
    APPLIED PHYSICS LETTERS, 2016, 108 (19)
  • [40] Growth of GaP and AlGaP on GaP(111) B using gas-source molecular-beam-epitaxy
    Barakat, J. -B.
    Dadgostar, S.
    Hestroffer, K.
    Bierwagen, O.
    Trampert, A.
    Hatami, F.
    JOURNAL OF CRYSTAL GROWTH, 2017, 477 : 91 - 96