Eigenproblem for Jacobi matrices: hypergeometric series solution

被引:4
|
作者
Kuznetsov, V. B. [2 ]
Sklyanin, E. K. [1 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[2] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2008年 / 366卷 / 1867期
关键词
Jacobi matrix; tridiagonal matrix; Lagrange inversion formula; spectral problem; multivariate hypergeometric series;
D O I
10.1098/rsta.2007.2062
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the perturbative power series expansions of the eigenvalues and eigenvectors of a general tridiagonal (Jacobi) matrix of dimension d. The (small) expansion parameters are the entries of the two diagonals of length d-1 sandwiching the principal diagonal that gives the unperturbed spectrum. The solution is found explicitly in terms of multivariable (Horn-type) hypergeometric series in 3d-5 variables in the generic case. To derive the result, we first rewrite the spectral problem for the Jacobi matrix as an equivalent system of algebraic equations, which are then solved by the application of the multivariable Lagrange inversion formula. The corresponding Jacobi determinant is calculated explicitly. Explicit formulae are also found for any monomial composed of eigenvector's components.
引用
收藏
页码:1089 / 1114
页数:26
相关论文
共 50 条
  • [1] On Fourier Series in the Context of Jacobi Matrices
    Matos, Jose M. A.
    Vasconcelos, Paulo B.
    Matos, Jose A. O.
    AXIOMS, 2024, 13 (09)
  • [2] PERTURBATION SERIES FOR JACOBI MATRICES AND THE QUANTUM RABI MODEL
    Charif, Mirna
    Zielinski, Lech
    OPUSCULA MATHEMATICA, 2021, 41 (03) : 301 - 333
  • [3] Inhomogeneous Jacobi Matrices on Trees
    Szwarc, Ryszard
    CONSTRUCTIVE APPROXIMATION, 2018, 48 (02) : 183 - 199
  • [4] A Note on Reflectionless Jacobi Matrices
    Jaksic, V.
    Landon, B.
    Panati, A.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 332 (02) : 827 - 838
  • [5] On the location of the eigenvalues of Jacobi matrices
    da Fonseca, C. M.
    APPLIED MATHEMATICS LETTERS, 2006, 19 (11) : 1168 - 1174
  • [6] A Note on Reflectionless Jacobi Matrices
    V. Jakšić
    B. Landon
    A. Panati
    Communications in Mathematical Physics, 2014, 332 : 827 - 838
  • [7] An inverse eigenvalue problem for pseudo-Jacobi matrices
    Xu, Wei-Ru
    Bebiano, Natalia
    Chen, Guo-Liang
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 346 : 423 - 435
  • [8] Inhomogeneous Jacobi Matrices on Trees
    Ryszard Szwarc
    Constructive Approximation, 2018, 48 : 183 - 199
  • [9] Symmetry Groups of An Hypergeometric Series
    Kajihara, Yasushi
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2014, 10