Image-Derived Input Functions for Quantification of A1 Adenosine Receptors Availability in Mice Brains Using PET and [18F]CPFPX

被引:2
作者
He, Xuan [1 ,2 ]
Wedekind, Franziska [1 ]
Kroll, Tina [1 ]
Oskamp, Angela [1 ]
Beer, Simone [1 ]
Drzezga, Alexander [1 ,3 ]
Ermert, Johannes [4 ]
Neumaier, Bernd [4 ]
Bauer, Andreas [1 ,5 ]
Elmenhorst, David [1 ,6 ]
机构
[1] Forschungszentrum Julich, Inst Neurowissensch & Med INM 2, Julich, Germany
[2] Rhein Westfal TH Aachen, Dept Neurophysiol, Inst Zool Bio 2, Aachen, Germany
[3] Univ Hosp Cologne, Dept Nucl Med, Cologne, Germany
[4] Forschungszentrum Julich, Inst Neurowissensch & Med INM 5, Julich, Germany
[5] Heinrich Heine Univ Dusseldorf, Med Fac, Neurol Dept, Dusseldorf, Germany
[6] Univ Bonn, Div Med Psychol, Bonn, Germany
关键词
image-derived input function; positron emission tomography; A(1) adenosine receptors; F-18]CPFPX; mice brains; POSITRON-EMISSION-TOMOGRAPHY; SMALL-ANIMAL PET; PARTIAL-VOLUME CORRECTION; CEREBRAL-BLOOD-FLOW; TIME-ACTIVITY CURVE; NONINVASIVE QUANTIFICATION; DYNAMIC PET; METABOLISM; MICROPET; LIGAND;
D O I
10.3389/fphys.2019.01617
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Purpose In vivo imaging for the A(1) adenosine receptors (A(1)ARs) with positron emission tomography (PET) using 8-cyclopentyl-3-(3-[F-18]fluoropropyl)-1-propylxan- thine ([F-18]CPFPX) has become an important tool for studying physiological processes quantitatively in mice. However, the measurement of arterial input functions (AIFs) on mice is a method with restricted applicability because of the small total blood volume and the related difficulties in withdrawing blood. Therefore, the aim of this study was to extract an appropriate [F-18]CPFPX image-derived input function (IDIF) from dynamic PET images of mice. Procedures In this study, five mice were scanned with [F-18]CPFPX for 60 min. Arterial blood samples (n = 7 per animal) were collected from the femoral artery and corrected for metabolites. To generate IDIFs, three different approaches were selected: (A) volume of interest (VOI) placed over the heart (cube, 10 mm); (B) VOI set over abdominal vena cava/aorta region with a cuboid (5 x 5 x 15 mm); and (C) with 1 x 1 x 1 mm voxels on five consecutive slices. A calculated scaling factor (alpha) was used to correct for partial volume effect; the method of obtaining the total metabolite correction of [F-18]CPFPX for IDIFs was developed. Three IDIFs were validated by comparison with AIF. Validation included the following: visual performance; computing area under the curve (AUC) ratios (IDIF/AIF) of whole-blood curves and parent curves; and the mean distribution volume (V-T) ratios (IDIF/AIF) of A(1)ARs calculated by Logan plot and two-tissue compartment model. Results Compared with the AIF, the IDIF with VOI over heart showed the best performance among the three IDIFs after scaling by 1.77 (alpha) in terms of visual analysis, AUC ratios (IDIF/AIF; whole-blood AUC ratio, 1.03 +/- 0.06; parent curve AUC ratio, 1.01 +/- 0.10) and V-T ratios (IDIF/AIF; Logan V-T ratio, 1.00 +/- 0.17; two-tissue compartment model V-T ratio, 1.00 +/- 0.13) evaluation. The A(1)ARs distribution of average parametric images was in good accordance to autoradiography of the mouse brain. Conclusion The proposed study provides evidence that IDIF with VOI over heart can replace AIF effectively for quantification of A(1)ARs using PET and [F-18]CPFPX in mice brains.
引用
收藏
页数:11
相关论文
共 44 条
[1]   Quantitative autoradiography of adenosine receptors in brains of chronic naltrexone-treated mice [J].
Bailey, A ;
Hawkins, RM ;
Hourani, SMO ;
Kitchen, I .
BRITISH JOURNAL OF PHARMACOLOGY, 2003, 139 (06) :1187-1195
[2]   In vivo imaging of adenosine A1 receptors in the human brain with [18F]CPFPX and positron emission tomography [J].
Bauer, A ;
Holschbach, MH ;
Meyer, PT ;
Boy, C ;
Herzog, H ;
Olsson, RA ;
Coenen, HH ;
Zilles, K .
NEUROIMAGE, 2003, 19 (04) :1760-1769
[3]   In vitro and In vivo Assessment of Suitable Reference Region and Kinetic Modelling for the mGluR1 Radioligand [11C]ITDM in Mice [J].
Bertoglio, Daniele ;
Verhaeghe, Jeroen ;
Korat, Spela ;
Miranda, Alan ;
Wyffels, Leonie ;
Stroobants, Sigrid ;
Mrzljak, Ladislav ;
Dominguez, Celia ;
Liu, Longbin ;
Skinbjerg, Mette ;
Munoz-Sanjuan, Ignacio ;
Staelens, Steven .
MOLECULAR IMAGING AND BIOLOGY, 2020, 22 (04) :854-863
[4]   Metabolism of the A1 adenosine receptor positron emission tomography ligand [18F]8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine ([18F]CPFPX) in rodents and humans [J].
Bier, D ;
Holschbach, MH ;
Wutz, W ;
Olsson, RA ;
Coenen, HH .
DRUG METABOLISM AND DISPOSITION, 2006, 34 (04) :570-576
[5]  
Chatziioannou AF, 1999, J NUCL MED, V40, P1164
[6]   Characterization of the image-derived carotid artery input function using independent component analysis for the quantitation of [18F] fluorodeoxyglucose positron emission tomography images [J].
Chen, K. ;
Chen, X. ;
Renaut, R. ;
Alexander, G. E. ;
Bandy, D. ;
Guo, H. ;
Reiman, E. M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (23) :7055-7071
[7]   Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function [J].
Chen, K ;
Bandy, D ;
Reiman, E ;
Huang, SC ;
Lawson, M ;
Feng, D ;
Yun, LS ;
Palant, A .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1998, 18 (07) :716-723
[8]   MicroPET: A high resolution PET scanner for imaging small animals [J].
Cherry, SR ;
Shao, Y ;
Silverman, RW ;
Meadors, K ;
Siegel, S ;
Chatziioannou, A ;
Young, JW ;
Jones, WF ;
Moyers, JC ;
Newport, D ;
Boutefnouchet, A ;
Farquhar, TH ;
Andreaco, M ;
Paulus, MJ ;
Binkley, DM ;
Nutt, R ;
Phelps, ME .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1997, 44 (03) :1161-1166
[9]   Image-derived input function in dynamic human PET/CT: methodology and validation with 11C-acetate and 18F-fluorothioheptadecanoic acid in muscle and 18F-fluorodeoxyglucose in brain [J].
Croteau, Etienne ;
Lavallee, Eric ;
Labbe, Sebastien M. ;
Hubert, Laurent ;
Pifferi, Fabien ;
Rousseau, Jacques A. ;
Cunnane, Stephen C. ;
Carpentier, Andre C. ;
Lecomte, Roger ;
Benard, Francois .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2010, 37 (08) :1539-1550
[10]   In Vivo Kinetic and Steady-State Quantification of 18F-CPFPX Binding to Rat Cerebral A1 Adenosine Receptors: Validation by Displacement and Autoradiographic Experiments [J].
Elmenhorst, David ;
Kroll, Tina ;
Wedekind, Franziska ;
Weisshaupt, Angela ;
Beer, Simone ;
Bauer, Andreas .
JOURNAL OF NUCLEAR MEDICINE, 2013, 54 (08) :1411-1419