Some issues on interpolation matrices of locally scaled radial basis functions

被引:2
|
作者
Lee, Mun Bae [2 ]
Lee, Yeon Ju [3 ]
Sunwoo, Hasik [4 ]
Yoon, Jungho [1 ]
机构
[1] Ewha W Univ, Dept Math, Seoul, South Korea
[2] Konkuk Univ, Dept Math, Seoul 143701, South Korea
[3] Korea Adv Inst Sci & Technol, Dept Math Sci, Taejon 305701, South Korea
[4] Konkuk Univ, Dept Math & Comp Sci, Chungju, South Korea
关键词
Radial basis function; Singularity; Conditionally positive definite function; Scaling parameter; POSITIVE DEFINITE FUNCTIONS; DISTANCE MATRICES; SCATTERED DATA;
D O I
10.1016/j.amc.2010.11.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Radial basis function interpolation on a set of scattered data is constructed from the corresponding translates of a basis function, which is conditionally positive definite of order m >= 0, with the possible addition of a polynomial term. In many applications, the translates of a basis function are scaled differently, in order to match the local features of the data such as the flat region and the data density. Then, a fundamental question is the non-singularity of the perturbed interpolation (N x N) matrix. In this paper, we provide some counter examples of the matrices which become singular for N >= 3, although the matrix is always non-singular when N = 2. One interesting feature is that a perturbed matrix can be singular with rather small perturbation of the scaling parameter. (c) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:5011 / 5014
页数:4
相关论文
共 50 条
  • [41] Sobolev Error Estimates and a Bernstein Inequality for Scattered Data Interpolation via Radial Basis Functions
    Francis J. Narcowich
    Joseph D. Ward
    Holger Wendland
    Constructive Approximation, 2006, 24 : 175 - 186
  • [42] Three-Dimensional Modelling of Geological Surfaces Using Generalized Interpolation with Radial Basis Functions
    Hillier, Michael J.
    Schetselaar, Ernst M.
    de Kemp, Eric A.
    Perron, Gervais
    MATHEMATICAL GEOSCIENCES, 2014, 46 (08) : 931 - 953
  • [43] Recent developments in error estimates for scattered-data interpolation via radial basis functions
    Narcowich, FJ
    NUMERICAL ALGORITHMS, 2005, 39 (1-3) : 307 - 315
  • [44] A discrete adapted hierarchical basis solver for radial basis function interpolation
    Castrillon-Candas, Julio E.
    Li, Jun
    Eijkhout, Victor
    BIT NUMERICAL MATHEMATICS, 2013, 53 (01) : 57 - 86
  • [45] A discrete adapted hierarchical basis solver for radial basis function interpolation
    Julio E. Castrillón-Candás
    Jun Li
    Victor Eijkhout
    BIT Numerical Mathematics, 2013, 53 : 57 - 86
  • [46] STABLE COMPUTATION OF DIFFERENTIATION MATRICES AND SCATTERED NODE STENCILS BASED ON GAUSSIAN RADIAL BASIS FUNCTIONS
    Larsson, Elisabeth
    Lehto, Erik
    Heryudono, Alfa
    Fornberg, Bengt
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (04) : A2096 - A2119
  • [47] Mesh deformation on 3D complex configurations using multistep radial basis functions interpolation
    Wang, Gang
    Chen, Xin
    Liu, Zhikan
    CHINESE JOURNAL OF AERONAUTICS, 2018, 31 (04) : 660 - 671
  • [48] Scattered-data interpolation on Rn:: Error estimates for radial basis and band-limited functions
    Narcowich, FJ
    Ward, JD
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (01) : 284 - 300
  • [49] Refined Error Estimates for Radial Basis Function Interpolation
    F.J. Narcowich
    J.D. Ward
    H. Wendland
    Constructive Approximation, 2003, 19 : 541 - 564
  • [50] Inverse and saturation theorems for radial basis function interpolation
    Schaback, R
    Wendland, H
    MATHEMATICS OF COMPUTATION, 2002, 71 (238) : 669 - 681