Prospects of yeast systems biology for human health: integrating lipid, protein and energy metabolism

被引:45
作者
Petranovic, Dina [1 ]
Tyo, Keith [1 ]
Vemuri, Goutham N. [1 ]
Nielsen, Jens [1 ]
机构
[1] Chalmers Univ Technol, Dept Chem & Biol Engn, SE-41296 Gothenburg, Sweden
基金
瑞典研究理事会;
关键词
yeast systems biology; energy metabolism; proteostasis; ENDOPLASMIC-RETICULUM STRESS; PROGRAMMED CELL-DEATH; SACCHAROMYCES-CEREVISIAE; TRANSCRIPTION FACTORS; OXIDIZED PROTEINS; UPSTREAM KINASE; GLOBAL ANALYSIS; SNF1; KINASE; GLUCOSE REPRESSION; OXIDATIVE STRESS;
D O I
10.1111/j.1567-1364.2010.00689.x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The yeast Saccharomyces cerevisiae is a widely used model organism for studying cell biology, metabolism, cell cycle and signal transduction. Many regulatory pathways are conserved between this yeast and humans, and it is therefore possible to study pathways that are involved in disease development in a model organism that is easy to manipulate and that allows for detailed molecular studies. Here, we briefly review pathways involved in lipid metabolism and its regulation, the regulatory network of general metabolic regulator Snf1 (and its human homologue AMPK) and the proteostasis network with its link to stress and cell death. All the mentioned pathways can be used as model systems for the study of homologous pathways in human cells and a failure in these pathways is directly linked to several human diseases such as the metabolic syndrome and neurodegeneration. We demonstrate how different yeast pathways are conserved in humans, and we discuss the possibilities of using the systems biology approach to study and compare the pathways of relevance with the objective to generate hypotheses and gain new insights.
引用
收藏
页码:1046 / 1059
页数:14
相关论文
共 120 条
  • [1] ABDELHALIM MN, 1980, J BIOL CHEM, V255, P441
  • [2] Protein misfolding in neurodegenerative diseases
    Agorogiannis, EI
    Agorogiannis, GI
    Papadimitriou, A
    Hadjigeorgiou, GM
    [J]. NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 2004, 30 (03) : 215 - 224
  • [3] Adapting proteostasis for disease intervention
    Balch, William E.
    Morimoto, Richard I.
    Dillin, Andrew
    Kelly, Jeffery W.
    [J]. SCIENCE, 2008, 319 (5865) : 916 - 919
  • [4] De novo formation of transitional ER sites and Golgi structures in Pichia pastoris
    Bevis, BJ
    Hammond, AT
    Reinke, CA
    Glick, BS
    [J]. NATURE CELL BIOLOGY, 2002, 4 (10) : 750 - 756
  • [5] AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling.
    Bolster, DR
    Crozier, SJ
    Kimball, SR
    Jefferson, LS
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (27) : 23977 - 23980
  • [6] Genetics - Yeast as a model organism
    Botstein, D
    Chervitz, SA
    Cherry, JM
    [J]. SCIENCE, 1997, 277 (5330) : 1259 - 1260
  • [7] Stimulation of the AMP-activated protein kinase leads to activation of eukaryotic elongation factor 2 kinase and to its phosphorylation at a novel site, Serine 398
    Browne, GJ
    Finn, SG
    Proud, CG
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (13) : 12220 - 12231
  • [8] AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
    Canto, Carles
    Gerhart-Hines, Zachary
    Feige, Jerome N.
    Lagouge, Marie
    Noriega, Lilia
    Milne, Jill C.
    Elliott, Peter J.
    Puigserver, Pere
    Auwerx, Johan
    [J]. NATURE, 2009, 458 (7241) : 1056 - U140
  • [9] THE SUBSTRATE AND SEQUENCE SPECIFICITY OF THE AMP-ACTIVATED PROTEIN-KINASE - PHOSPHORYLATION OF GLYCOGEN-SYNTHASE AND PHOSPHORYLASE-KINASE
    CARLING, D
    HARDIE, DG
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA, 1989, 1012 (01) : 81 - 86
  • [10] Apoptosis in yeast: triggers, pathways, subroutines
    Carmona-Gutierrez, D.
    Eisenberg, T.
    Buettner, S.
    Meisinger, C.
    Kroemer, G.
    Madeo, F.
    [J]. CELL DEATH AND DIFFERENTIATION, 2010, 17 (05) : 763 - 773